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Surrogate-based ensemble data assimilation for reducing
uncertainty in large-eddy simulation of microscale pollutant

dispersion
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Abstract By capturing the physical complexity of the interactions between atmospheric
flows and the built environment, Large-Eddy Simulations (LES) could provide detailed
information for risk assessment and mitigation in case of environmental emergency. How-
ever, to account for LES uncertainties and cover the range of plausible scenarios in order
to support decision making, it is necessary to go beyond deterministic simulation capabil-
ity. This study introduces a novel ensemble-based data assimilation algorithm to correct
the LES meteorological forcing and thereby improve LES spatial predictions of pollutant
concentration by making use of available measurements. This approach is demonstrated
through the MUST field-scale experiment. Results show that the ensemble smoother with
multiple data assimilation (ESMDA) algorithm is a good candidate to address parameter
interaction effects in the relationship between uncertain meteorological forcing and LES
field quantities. This iterative algorithm is computationally feasible when the LES model
is replaced with a machine learning-based surrogate model, from which robust ensemble
statistics can be extracted. This surrogate-based data assimilation approach can then be
used to examine observability in the system. Results show that the estimation outcome
is highly sensitive to the design of the observation network, and that this sensitivity may
be underestimated in idealized experiments. It is therefore important to use real data as-
similation to optimize sensor placement and extract informative data for modeling, thus
improving our ability to monitor accidental dispersion events.

Keywords Data assimilation · Uncertainty quantification · Observability · Surrogate
modeling · Large-eddy simulation · Microscale pollutant dispersion

1 Introduction

By 2050, it is estimated that two-thirds of the world’s population will live in cities
(United Nations and Social Affairs 2019). In response, urbanized areas will expand rapidly
(Seto et al. 2012), multiplying the number of interfaces with forests and industrial sites,
thereby increasing the vulnerability of populations to accidental releases of pollutants into
the atmosphere due to wildfires and industrial accidents. Rapid and realistic assessment of
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air pollution risks is therefore critical to making cities safer and more resilient1. To address
this issue, new microscale pollutant dispersion modeling strategies must be developed,
which accurately represent the pollutant concentration hotspots induced by the urban
landscape, and the various uncertainties inherent to the Atmospheric Boundary Layer
(ABL), in order to cover all plausible scenarios for emergency response.

Computational Fluid Dynamics (CFD) modeling approaches, such as Reynolds-averaged
Navier-Stokes and Large-Eddy Simulation (LES), are increasingly recognized as essential
tools for predicting atmospheric flow and pollutant dispersion in urban areas at high spa-
tial resolution (Blocken 2015; Dauxois et al. 2021; Tominaga et al. 2023). CFD approaches
explicitly solve the flow governing equations and represent the interactions between the at-
mosphere and the urban landscape. However, their substantial computational cost makes
them impractical for real-time applications such as emergency response. Moreover, the
validation of CFD urban flow predictions against field measurements shows that their
accuracy is limited, even compared to operational or empirical models (Schatzmann and
Leitl 2011; Neophytou et al. 2011; Antonioni et al. 2012). This is because the higher the
complexity of the model, the more sensitive it becomes to input data and model parameter
uncertainty (Hanna 1989).

Microscale CFD dispersion models are subject to uncertainty in their boundary con-
ditions: i.e. in the meteorological forcing (Garćıa-Sánchez et al. 2014; Lucas et al. 2016;
Wise et al. 2018), the urban geometry representation (Santiago et al. 2010; Montazeri
and Blocken 2013; Gromke et al. 2016), and the pollutant source intensity and location
(Winiarek et al. 2012; Spicer and Tickle 2021). They are also subject to structural model-
ing uncertainty, mostly related to numerical errors and turbulence modeling assumptions
and parameterization (Tominaga and Stathopoulos 2007, 2009; Gorlé and Iaccarino 2013;
Gorlé et al. 2015; Xiao et al. 2016). In addition, the turbulent nature of the ABL induces a
significant aleatory and irreducible uncertainty, known as internal variability, which could
explain a large part of the discrepancies between field measurements and CFD model pre-
dictions (Schatzmann and Leitl 2011; Neophytou et al. 2011; Dauxois et al. 2021; Lumet
et al. 2024b).

Recent studies have highlighted the remarkable ability of data assimilation (DA) to
enhance microscale atmospheric CFD models. By optimally merging observation data
with LES model predictions, DA has been successfully used to reduce uncertainties in
meteorological forcing parameters (Li and Xue 2018; Sousa et al. 2018; Sousa and Gorlé
2019; Defforge et al. 2019, 2021), pollutant source parameters (Keats et al. 2007; Mons
et al. 2017; Launay et al. 2024), and turbulence modeling (Xiao et al. 2016). These studies
have provided tentative guidelines on how to formulate the DA problem for microscale
flow applications. In particular, they have shown that i) it is more relevant to estimate
boundary conditions than initial conditions in the CFD context (Defforge 2019; Aristode-
mou et al. 2019); ii) there is a need to reduce CFD model computational cost to provide
a priori (or background) information to the estimation problem using either surrogate
models (Sousa et al. 2018; Sousa and Gorlé 2019), dimension reduction techniques (Mons
et al. 2017; Aristodemou et al. 2019; Bauweraerts and Meyers 2021) or DA algorithms
that require few model queries (Defforge et al. 2019, 2021).

Building on these advances, this study proposes a novel surrogate-based ensemble
DA system to further improve predictions of microscale urban pollutant dispersion. The

1UN Sustainable Development Goal #11: https://sdgs.un.org/goals/goal11 (Accessed: 27/06/2025).
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system aims to provide faster and more accurate probabilistic dispersion predictions by
inferring meteorological forcing parameters through the assimilation of in-situ pollutant
concentration measurements. The MUST field campaign (Yee and Biltoft 2004) is used
as a realistic case study, to demonstrate the potential and robustness of the proposed DA
system. This work addresses two particular issues: i) reducing uncertainties and identi-
fying those that still affect state-of-the-art LES dispersion models; and ii) analyzing the
sensitivity of the DA results to the number and position of assimilated observations (Mons
et al. 2017; Sousa et al. 2018).

The sensitivity to the observation location is closely related to the question of observ-
ability of the system. If the available observations are not in areas influenced by the
inferred global parameters, the DA problem becomes ill-posed and the DA process can-
not converge properly. One novelty of this study is the implementation of the Ensemble
Smoother with Multiple Data Assimilation (ESMDA) algorithm of Emerick and Reynolds
(2013) to better address the nonlinear relationship between the estimated parameters and
the observable quantities. Another strength of the proposed DA system is the online in-
tegration of a surrogate model, referred to as POD–GPR (Marrel et al. 2015; Nony et al.
2023). Trained offline using the PPMLES2 dataset (Lumet et al. 2025a), this surrogate
reduces the online prediction time by five orders of magnitude compared to LES (Marrel
et al. 2015; Lumet et al. 2025b) and can therefore provide large-ensemble predictions to
efficiently estimate a wide range of pollutant concentration scenarios within the ESMDA.
This reduction in computational cost is leveraged to go one step further in the validation
of the DA system by evaluating its robustness to initial bias in background parameters,
ensemble sampling, and observation location. This provides insights into the observability
and equifinality (Beven and Freer 2001) properties of the DA system.

This article is organized as follows. Section 2 briefly presents the MUST use case,
including the experimental trial and the existing LES and POD–GPR models. Section 3
introduces the DA system to improve LES predictions of pollutant dispersion. The vali-
dation of the DA system against the MUST trial is studied for idealized observations in
Sect. 4 and for real observations in Sect. 5. Finally, the sensitivity of the DA system to
observation network design is investigated in Sect. 6.

2 Experimental data and models for the MUST case study

This section introduces the three main components of the case study: i) the MUST
field data, which provide tracer concentration measurements for the DA system and its
validation; ii) the reference LES pollutant dispersion model (Lumet et al. 2024b) to be
improved by DA; and iii) the POD–GPR surrogate model (Lumet et al. 2025b) to be
integrated within the DA system to reduce inline prediction computational costs.

2.1 The MUST field campaign

The Mock Urban Setting Test (MUST) field campaign was conducted in Septem-
ber 2001 at the US Army Dugway Proving Ground test site in the Utah desert, USA,
to provide comprehensive measurements of air pollutant dispersion within an urban-like

2Perturbed-Parameter ensemble of MUST Large-Eddy Simulations, dataset available at 10.5281/zen-
odo.11394347.
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canopy (Biltoft 2001; Yee and Biltoft 2004). It is a canonical case study for the devel-
opment, validation and intercomparison of CFD dispersion models (Schatzmann et al.
2010). Although it is a highly controlled experiment (simplified geometry, isolated site
and well-instrumented to define boundary conditions), local differences between CFD
model predictions and observations are not yet fully explained (Milliez and Carissimo
2007; König 2014; Nagel et al. 2022; Lumet et al. 2024b). This makes MUST a rele-
vant case study in which to investigate the potential of DA to improve CFD predictions
(Defforge et al. 2021).
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Figure 1: Schematic view of the MUST array configuration. The coordinate system used is
the same as in Yee and Biltoft (2004), so that north corresponds to the angle of −30° in the
x–y system. Black rectangles represent the shipping containers used to mimic the urban canopy.
The red star represents the location of the propylene source for the trial #2681829. The red
arrow corresponds to the reference upstream wind direction estimated from the tower S and ASU
anemometer measurements. The colored circles correspond to the DPID concentration samplers,
and the colored squares correspond to the UVIC concentration samplers mounted on towers A, B,
C, and D (note that there is a DPID sampler at the same location as tower D).

The MUST campaign consists of several trials in which a non-reactive gas tracer was
released within an array of 10×12 regularly-spaced shipping containers, mimicking an
idealized urban canopy (Fig. 1). This work focuses on the #2681829 trial corresponding
to neutral atmospheric conditions and for which the tracer source was located between
the containers at 1.8m above ground (red star in Fig. 1). The objective here is to predict
the time-averaged tracer concentration, defined over the standard 200-s analysis period
extracted by Yee and Biltoft (2004) to minimize mesoscale meteorological variability.

During the MUST campaign, wind velocity and direction were measured within the
container array by four anemometers mounted on the central tower T at z = 4, 8, 16 and
32m (orange circle in Fig. 1), and upstream of the container array by three anemometers
mounted on the tower S at z = 4, 8 and 16m (blue triangle in Fig. 1). Another sonic
anemometer, provided by the Arizona State University (ASU), measured the wind velocity
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upstream of the containers at z = 1.6m (purple plus symbol in Fig. 1). A network of
meteorological stations was also installed throughout the Dugway Proving Ground, with
the closest station to the container array, about 1 600m to the southeast. Each station
measures wind velocity at z = 10m, with sampling times ranging from 5 to 15 minutes.

Tracer concentration was measured using 48 digi-photoionization detectors (DPID) and
24 ultraviolet ion collectors (UVIC), shown as colored circles and squares, respectively, in
Fig. 1. The DPIDs have a detection threshold of 0.04 ppm versus 0.01 ppm for the UVICs.
The horizontal distribution of the tracer concentration was measured by 40 DPIDs located
at the same height (z = 1.6m) within the canopy, forming four DPID lines (one color per
line in Fig. 1). The vertical distribution of the tracer concentration was tracked by five
towers equipped with either 8 DPIDs (tower T at z = 1, 2, 4, 6, 8, 10, 12 and 16m) or 6
UVICs (towers A, B, C, D at z = 1, 2, 3, 4, 5, 5.9m). For a complete description of the
instruments used during the MUST campaign, the reader is referred to Biltoft (2001).

2.2 Large-eddy simulation of the MUST experiment

An LES numerical model is used to reproduce the MUST trial under varying meteoro-
logical forcing. The model relies on the AVBP3 (Schönfeld and Rudgyard 1999; Gicquel
et al. 2011) code to solve the LES-filtered Navier-Stokes and tracer transport equations
with the second-order Lax-Wendroff numerical scheme (Schönfeld and Rudgyard 1999).
Subgrid momentum transport is represented with the wall-adaptative local eddy-viscosity
model (Nicoud and Ducros 1999). Tracer transport relies on a gradient-diffusion approach
with a standard turbulent Schmidt number of 0.6.

The MUST field geometry is discretized with a 91-million-tetrahedron, unstructured
mesh with a 0.3-m resolution at container level. This resolution is deemed sufficient
based on LES guidelines to capture flow interaction with urban-type obstacles (Tominaga
et al. 2008; Franke et al. 2007). The shipping container height is 2.54 m high and is
therefore discretized with approximately 8 grid points. Standard boundary conditions
following the MUST intercomparison guidelines are used (Franke et al. 2007). The LES
model was validated in Lumet et al. (2024b), achieving state-of-the-art level of accuracy
in reproducing the MUST trial #2681829. A complete description of the LES model,
including its boundary conditions, is provided in Lumet (2024), Chapter II. The following
section focuses on the meteorological forcing, as it incorporates the main parameters to
infer with the DA system.

2.3 Meteorological forcing parameterization

The large-scale meteorological forcing is represented in the LES model by a standard
logarithmic wind profile (Richards and Hoxey 1993). With this profile, corresponding to
a fully-developed neutral atmospheric surface layer, the mean inlet wind velocity vector
u reads:

u(z) =
u∗
κ

ln

(
z + z0
z0

)cos(αinlet)

sin(αinlet)

0

 , (1)

where κ is the von Kármán constant equal to 0.4; z0 is the aerodynamic roughness length
estimated to be 0.045±0.005m by Yee and Biltoft (2004); αinlet is the mean wind direction;

3AVBP documentation, see https://www.cerfacs.fr/avbp7x/
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and u∗ is the friction velocity.
Temporal wind fluctuations are added to the mean inlet wind profile using the synthetic

turbulence injection method of Smirnov et al. (2001). The imposed Reynolds stress tensor
is estimated from a precursor free-field simulation inspired by the work from Vasaturo et al.
(2018). Assuming that the atmosphere is at the equilibrium, the velocity fluctuations can
then be rescaled accordingly to the actual wind friction velocity u∗ and direction αinlet as
explained in Lumet et al. (2024b).

Control vector definition The meteorological forcing is parameterized by two param-
eters, which are gathered in the control vector θ:

θ = (αinlet, u∗)
T. (2)

θ is the DA estimation target, implying that the DA system aims to infer θ based on the
tracer concentration measurements yo in order to improve pollutant dispersion prediction.

This choice of control vector θ is widely used in urban flows studies involving surrogate
modeling (Margheri and Sagaut 2016; Garćıa-Sánchez et al. 2014, 2017) and/or DA (Mons
et al. 2017; Sousa et al. 2018; Sousa and Gorlé 2019). With this choice, there are only
two degrees of freedom for DA. This control vector could be augmented by using a more
complex parameterization of the meteorological forcing (Defforge et al. 2019), but that is
beyond the scope of this study.

Reference meteorological parameters Reference values of the control parameters

θ(ref) =
(
α
(ref
inlet, u

(ref)
∗

)T
are required to carry out DA idealized experiments and validate

the DA estimates of the control vector θ (Sect. 4). Here the reference is defined based on
prior work (Lumet et al. 2024b), using unassimilated wind velocity measurements from

the selected MUST trial. The reference inlet wind direction, α
(ref)
inlet = −41 ◦, corresponds

to the mean of the time-averaged measurements from the tower S and ASU anemometers
(located 30m upstream of the container array, see Fig. 1). The reference friction velocity,

u
(ref)
∗ = 0.73m s−1, is obtained by fitting the logarithmic wind profile (Eq. 1) to the sonic

anemometer measurements.

2.4 The POD–GPR surrogate model

Predicting the 200-s averaged concentration field c with the LES model (Sect. 2.2)
costs approximately 20 000 core hours (using 1344 Intel Skylake CPU cores). Such a
computational load would hinder the operability of the DA system and limit the sensi-
tivity tests that can be carried out for validation purposes. This motivates the use of a
surrogate model that can quickly and accurately emulate the response of the LES tracer
concentration field c to the selected meteorological forcing parameters θ (Eq. 2).

This surrogate model, designed and evaluated in Lumet et al. (2025b), adopts the
POD–GPR machine learning approach from Marrel et al. (2015). Proper Orthogonal
Decomposition (POD) reduces the dimension of the emulated field c, from the order of
million grid elements to only 10 POD modes {Ψℓ}10ℓ=1

. The choice of a POD latent space
dimension equal to 10 is a trade-off between minimizing reconstruction error and reducing
overfitting of noise present in the training set. Then, Gaussian Process Regression (GPR)
is used to learn the relationship between the input parameters θ and the coefficients
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Figure 2: Schematic of the POD–GPR surrogate model prediction principle, with one submodel
for each of the ten POD modes. The pre-trained Gaussian processes (GPRℓ) predict the POD
coefficients associated with any set of wind conditions θ in the latent space. The inverse POD
projection is applied to retrieve the associated 3-D physical field from the latent space.

{kℓ}10ℓ=1
of the projection of the concentration field c onto the POD basis. Figure 2

illustrates how new POD–GPR predictions are obtained (i.e. for meteorological forcing
parameters that are not present in the training dataset).

The POD–GPR model was trained offline using the PPMLES2 dataset (Lumet et al.
2025a) made of 200 LES simulations for varying meteorological forcing parameters

θ ∈ [−90 ◦, 30 ◦]× [0.07m s−1, 0.89m s−1], (3)

which define the parametric bounds and thus the validity range of the surrogate model.
The total computational cost of this dataset was about 5.7 million of core hours. Results
show that the POD–GPR model reduces prediction time by five orders of magnitude
compared to LES in the online prediction step. It achieves the best possible accuracy levels
given the internal variability in the validation data, except for the highest concentrations
near the source, and it is robust to training data noise (Lumet et al. 2025b).

An interesting feature of the POD–GPR surrogate model is that it provides a proba-
bilistic prediction of the tracer concentration field c, i.e. MPOD−GPR : θ 7→ P(c|θ). These
distributions accurately represent a large fraction of surrogate modeling and internal vari-
ability errors (Lumet et al. 2025b). The mean and standard deviation of two different
POD–GPR distribution predictions are shown in Fig. 3 for the reference (Sect. 2.3) and
background (Sect. 3.3) parameter values for illustration purposes. This figure illustrates
the local drop in accuracy of the POD–GPR model near the emission source, where tracer
concentrations are the highest, while the surrogate model error is very low in the rest of
the field. A detailed analysis in Lumet (2024) showed that it is not possible with POD–
GPR to achieve a remarkable level of accuracy both in the vicinity of the emission source
and in the near field. The surrogate model was then calibrated for optimal performance
in the near field, where the MUST sensors are located. In this study, the POD–GPR
distributions are sampled to account for the surrogate modeling and internal variability
errors in the DA system, as further explained in Sect. 3.2.2.

7



Figure 3: Horizontal cuts at z = 1.6m of the POD–GPR surrogate model predictions for
two sets of input parameters. The first row (a)-(b) corresponds to the reference parameters

(αref
inlet, u

ref
∗ ) = (−41◦, 0.73ms−1) estimated from tower S and ASU measurements. The sec-

ond row (c)-(d) corresponds to the background parameters (αb
inlet, u

b
∗) = (−25◦, 0.57ms−1). The

mean E(c) of the predicted POD–GPR concentration field distribution is given in the first column;
its standard deviation σ(c) is given in the second column.

3 Data assimilation methodology

3.1 Key features of the data assimilation system

In this work, a novel DA system is designed to improve the estimation of the time-
averaged concentration field c in the event of a local pollutant release. This is done
by combining the LES predictions with tracer concentration measurements yo to infer
the meteorological forcing parameters θ = (αinlet, u∗)

T (Eq. 2), thus corresponding to
the resolution of a parameter estimation problem. Anemometer measurements were not
assimilated so they can serve as independent data to validate the ability of the DA system
to accurately infer the meteorological forcing parameters.

The DA problem is solved using the Ensemble Smoother with Multiple Data Assimi-
lation (ESMDA) of Emerick and Reynolds (2013), which updates a prior distribution of
the control parameters, called the background, based on the observations yo and their un-
certainties. The posterior distribution, called the analysis, can then be used to predict a
new ensemble of pollutant dispersion scenarios with reduced uncertainty compared to the
background. Inspired by the work of Rochoux et al. (2014) and Sousa et al. (2018), the
LES model is replaced by a POD–GPR surrogate model (Sect. 2.4) within the ESMDA
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algorithm to substantially reduce prediction time and obtain robust ensemble statistics.
The main steps of the DA system are shown in Fig. 4. Note that in the present context,

the meteorological forcing parameters θ, the measurements yo and the concentration fields
c are time-averaged and considered stationary. This implies that the underlying system
system is static and a single DA cycle is performed.
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90°
(a) Meteorological forcing

Surrogate
POD—GPR

Offline 
model 
reduction

Observation 
operator

ESMDA
Bayesian update

(d) Updated meteorological forcing

LES Model

(b) Model prediction

Inlet wind direction Tracer concentration field

(c) Sensor inference 

In-situ concentration

Sensors

Figure 4: Schematic diagram of the surrogate-based DA system used to estimate the meteoro-
logical forcing parameters θ, inspired by Sousa et al. (2018). (a) The background ensemble (in
green) is generated to represent the range of uncertain meteorological forcing parameters. Only the
inlet wind direction distribution is shown, but the friction velocity is also inferred. (b) From this
background ensemble, an ensemble of tracer concentration fields is predicted using the pretrained
POD–GPR surrogate model. (c) The surrogate model predictions are mapped onto the observation
space and compared with the sensor measurements (in blue). (d) The ESMDA algorithm is used
to solve the inverse problem and infer an updated ensemble of meteorological forcing parameters
(in red), which minimizes the discrepancies with observations.

To go into more detail, the ESMDA algorithm is presented in Sect. 3.2; the modeling
of the uncertainties in the background parameters and in the observations is presented in
Sect. 3.3 and Sect. 3.4, respectively.

3.2 The ensemble smoother with multiple data assimilation algorithm

The ESMDA algorithm of Emerick and Reynolds (2012, 2013) is an ensemble-based
DA method that can be regarded as an iterative extension of the Ensemble Kalman Filter
(EnKF) (Evensen 1994, 2003). It has been shown to improve performance in highly
nonlinear estimation problems (Emerick and Reynolds 2012; Evensen et al. 2024), which
is particularly relevant for inferring wind direction, as this parameter induces strong
structural changes in the field quantities of interest (Zhang et al. 2017; Sousa et al. 2018).
These benefits of the ESMDA algorithm, however, come at the expense of a larger number
of model evaluations. This drawback is mitigated here by the use of a surrogate model.

3.2.1 ESMDA theoretical principle

The ESMDA problem can be considered from a probabilistic viewpoint, as the problem
of estimating the probability density function (PDF) P(θ|yo) of the forcing parameters θ
conditional on the measurements yo. Using Bayes’ theorem, this posterior PDF reads:

P(θ|yo) ∝ P(yo|θ)P(θ), (4)
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where P(yo|θ) represents the data likelihood, i.e., the PDF of the observations yo given
the control parameters θ. The principle of the ESMDA is to recursively sample this
posterior PDF over a predefined number of outer loops Na for a given DA cycle, noting
that it can be written as:

P(θ|yo) ∝ P(yo|θ)

 Na∑
k=1

1

αk


P(θ), (5)

so that 

P(θ|yo) ∝ P(yo|θ)
1
α1 p1(θ|yo),

p1(θ|yo) ∝ P(yo|θ)
1
α2 p2(θ|yo),

...

pNa−1(θ|yo) ∝ P(yo|θ)
1

αNa P(θ),

(6a)

(6b)

(6c)

provided that
Na∑
k=1

1

αk
= 1. (7)

TheseNa estimation problems are solved iteratively, using an EnKF to assimilate the same
observations yo, but with an inflation of the observation uncertainty by αk at each itera-
tion. Thus, ESMDA computes a sequence of small linear updates, while EnKF computes
one large linear update over a given DA cycle. This explains why ESMDA can increase
the accuracy of parameter estimation in highly nonlinear problems (Evensen et al. 2024).
As the EnKF, the ESMDA algorithm provides an exact solution to Bayes’ theorem only
when the prediction model is linear and when the parameters θ and the observations yo

are unbiased and normally distributed.

3.2.2 ESMDA algorithm

The ESMDA algorithm follows the three following steps:

• 1. Initialization: In the first iteration (k = 0), the background ensemble
{
θb
i

}Ne

i=1
(shown in green in Fig. 4a) is drawn from the first guess of the meteorological forcing
parameters θb and the background error covariance matrix B:

θb
i ∼ N (θb,B), 1 ≤ i ≤ Ne. (8)

The background sample is generated using the low-discrepancy sequence from Hal-
ton (1964), rescaled to the normal distribution N (·, ·). Using this quasi Monte Carlo
approach instead of pure random sampling limits the variability of the ESMDA anal-
ysis and reduces sampling errors as further explained in Appendix A.

• 2. Prediction step: Each member of the background ensemble is propagated
to the state space by randomly sampling the distribution P(c|θb

i) inferred by the
POD–GPR surrogate model:

xf
i ∼ P(c|θb

i), 1 ≤ i ≤ Ne. (9)
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This sampling allows to account for the errors associated with the use of the surro-
gate model instead of the LES model and with the internal variability of the ABL
(Lumet et al. 2025b). Here, the predicted state xf corresponds to the time-averaged
concentration field c (Fig. 4b).

• 3. Analysis step: Before calculating the actual analysis, the observations are
perturbed so that the analysis error statistics are not underestimated (Burgers et al.
1998; Houtekamer and Mitchell 1998). In the ESMDA framework, the observation
errors must be inflated by a factor

√
αk for the same reason (Emerick and Reynolds

2012). Consequently, an ensemble of perturbed observations is drawn from the real
observations yo, knowing the observation error covariance matrix R, as:

yo
i ∼ N (y, αkR), 1 ≤ i ≤ Ne. (10)

It is necessary to resample the perturbed observations at each iteration (or outer
loop) to avoid bias from using dependent samples (Evensen et al. 2024).
Once observations are perturbed, the Kalman filter update equation is applied to
update each background member θb

i through each analysis member θa
i to better

match the observations:

θa
i = θb

i +K∗
(
yo
i −H(xf

i )
)
, 1 ≤ i ≤ Ne, (11)

where H(·) is the observation operator that interpolates the predicted concentration

fields xf
i at the assimilated sensor locations (Fig. 4c), and where K∗ is the Kalman

gain matrix defined classically as:

K∗ = BGT(GBGT + αkR)−1, (12)

where G is the tangent linear of the generalized observation operator H ◦ M (i.e.
combining the observation operator H(·) and the model operator M(·) to map the
parameter space onto the observation space in a parameter estimation framework),
and where the observation uncertainty term also involves the multiplicative factor
αk to prevent ESMDA from underestimating the analysis error statistics. In prac-
tice, the error cross-covariance matrix BGT (mapping uncertainty from the control
space onto the observation space) and the error covariance matrix GBGT (in the
observation space) are estimated directly from the ensemble members:

BGT ≈ 1

Ne − 1

Ne∑
i=1

(θb
i − θ

b
)
(
H(xf

i )−H(xf
i )
)T

,

GBGT ≈ 1

Ne − 1

Ne∑
i=1

(
H(xf

i )−H(xf
i )
)(

H(xf
i )−H(xf

i )
)T

.

(13a)

(13b)

where the overbar · denotes the average over the ensemble. The resulting ensemble
{θa

i }Ne
i=1 obtained from Eq. (11) is called the analysis ensemble (in red in Fig. 4a).

It becomes the background ensemble for the next iteration (or outer loop).

3.2.3 ESMDA settings

In this study, constant inflation coefficients are used over the iterations, i.e. αk =
Na, 1 ≤ k ≤ Na. Using other sequences did not have a significant effect on the analysis,
which is consistent with Emerick and Reynolds (2013).
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The number of outer loops, Na ∈ 1, 2, 4, 6, is changed in Sect. 4 to assess the benefit of
applying ESMDA to parameter estimation in microscale pollutant dispersion. This setup
also enables comparison with the standard EnKF, a benchmark algorithm for parameter
estimation (Carrassi et al. 2018), which is strictly equivalent to ESMDA when Na = 1.

3.3 Background parameters and associated uncertainty

This section explains how the background parameters θb and their uncertainty (repre-
sented by the background error covariance matrix B) are defined. This is crucial because
the background parameter distributions correspond to the initial first guess of the DA
system (Fig. 4a).

3.3.1 Background error modeling

The background parameter uncertainty is quantified from 12 days of wind velocity
measurements taken at two distinct meteorological stations, each of which was located
a few kilometers away from the MUST site. The standard deviation of the difference
between the two station measurements provides the coefficients of the matrix B:

B =

(
σ2(αinlet) 0

0 σ2(u∗)

)
, (14)

with σ(αinlet) = 25◦ and σ(u∗) = 0.09m s−1. As the friction velocity and wind direction
errors were found to be uncorrelated (Lumet (2024), Chapter V), the matrixB is diagonal.

3.3.2 Choice of the background parameter values

In this study, the baseline background parameters are obtained by adding large pertur-
bations (∆αinlet = +16◦, ∆u∗ = +0.16 m s−1) to the reference parameters θ(ref) (defined
in Sect. 2.3). This results in the background (αb

inlet, u
b
∗)

T = (−25◦, 0.57 m s−1)T. This
choice enables assessment of the DA system’s ability to correct significant bias in the me-
teorological forcing parameters. Such a background scenario is realistic, since substantial
discrepancies often arise between the local incident flow and measurements from the near-
est weather stations used to specify the meteorological forcing parameters. Furthermore,
to evaluate the robustness of the DA system to background bias, this work studies the
DA performance for different values of the background parameters θb (Sect. 4.3).

3.3.3 Specific treatment of the friction velocity parameter

To ensure that the friction velocity estimated by DA is always positive, a logarithmic
anamorphosis is applied to the friction velocity taking inspiration from what has been
done on concentration anamorphosis by Liu et al. (2017) and Defforge et al. (2021) (see
further discussion in Sect. 3.4.3). The DA algorithm estimates the logarithmic friction
velocity ũ∗ = ln(u∗), instead of the friction velocity u∗. This ensures that the estimates
of u∗ always remain positive and that the assumption of a normal distribution of errors
is better satisfied. Indeed, it was found that the assumption that ln(u∗) follows a nor-
mal distribution is plausible, unlike u∗. Using this anamorphosis, the background error
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covariance matrix B and the unbiased background parameters vector θb become:

B =

(
σ2(αinlet) 0

0 σ2(ũ∗)

)
with σ2(ũ∗) = ln

(
1 +

σ2(u∗)

(ub∗)
2

)
, (15a)

θb = (αb
inlet, ũ∗

b)T with ũ∗
b = ln(ub∗)−

1

2
σ2(ũ∗). (15b)

3.4 Assimilating observations of pollutant concentration

3.4.1 Baseline observation network

For this study, a first baseline observation network consists in tracer concentration
measurements from 9 UVIC sensors on towers B, C and D at heights z ∈ {1, 2, 3}m,
which are located within the container array (Fig. 1). Unassimilated sensor data above
the detection threshold are used for DA validation. The DA system is evaluated for this
baseline observation network in Sect. 4 for idealized observations and in Sect. 5 for the
real MUST observations.

To study the observability property of the DA system, Sect. 6 analyzes DA results for
observation networks that differ from the baseline network in terms of the number and
location of the observations.

3.4.2 Observation error modeling

In-situ tracer concentration measurements may be subject to significant uncertainty,
notably due to instrument measurement errors and statistical errors resulting from the
internal variability of the ABL (Lumet et al. 2024b). To avoid overfitting these uncertain
observations, a realistic observation error covariance matrix R modeling is developed for
this study (see Appendix B).

3.4.3 Concentration anamorphosis

Since tracer concentration cannot be negative, the concentration anamorphosis pro-
posed by Liu et al. (2017) is used. It consists in assimilating log-transformed concentration
observations ỹo instead of the actual concentration measurements yo:

ỹo = ln(yo + ct), (16)

where ct is a threshold to avoid giving too much weight to low concentrations. In this
study, this threshold is set to the maximum sensor detection threshold from the MUST
experiment (Yee and Biltoft 2004), i.e. ct = 0.04 ppm. The same anamorphosis was used
in other DA studies (Mons et al. 2017; Defforge et al. 2021), with convincing results.

This transformation is based on the fairly standard assumption that concentration ob-
servations follow a log-normal distribution (Cassiani et al. 2020). In this way, observation
errors can be assumed to follow Gaussian distributions, ensuring greater consistency with
the ESMDA theoretical principle and the error representation through the R observation
error covariance matrix.
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4 Assimilation of idealized observations

In this section, the DA system is validated and calibrated using twin experiments, also
known as observing system simulation experiments (OSSE) in the literature (Arnold and
Dey 1986). In particular, the ESMDA and EnKF algorithms are systematically verified
and compared, with attention to their sensitivity to background sampling errors.

4.1 Twin experiment principle and setup

In twin experiments, the true system state xt is known and used to generate syn-
thetic observations by adding a random noise representative of the observation error
(Appendix B):

yo = H(xt) + ϵo, with ϵo ∼ N (0,R). (17)

In the present study, the true state corresponds to the POD–GPR surrogate prediction
associated with the true meteorological forcing parameters, i.e. xt = MPOD−GPR(θ

t).
Twin experiments provide an ideal testing framework as they give access to the true

state of the system and control vector, which are unknown in real applications. This makes
it possible to quantify the DA system accuracy in the control space (i.e. by comparing θa

and θt) and in the state model space (i.e. by comparing xa and xt). Twin experiments
guarantee the existence of an exact solution to the inverse problem, thus avoiding the
issue of parameter identification as a first step before moving on to the assimilation of
real MUST data and offering a way to valide the DA system components.

Table 1: Setup of the baseline twin experiment for parameter estimation. The first row corre-
sponds to the true parameters used to generate the synthetic observations given the measurement
and associated error in the second row. The third row gives the background parameters and asso-
ciated error. The last row gives the ESMDA parameters.

Notation Setup

True parameters θt = (αt
inlet, u

t
∗)

T (
−41 ◦, 0.73m s−1

)T
Observation network yo 9 observations of concentration at towers

B (1, 2, 3m), C (1, 2, 3m), and D (1, 2, 3m)

Observation error R see Appendix B

Background parameters θb =
(
αb
inlet, u

b
∗
)T (

−25 ◦, 0.57m s−1
)T

Background errors B =

(
σ2(αinlet) 0

0 σ2(u∗)

)
with σ(αinlet)25

◦, σ(u∗) = 0.09m s−1

Ensemble size Ne 500 (see Appendix A)

Number of outer loops Na {1, 2, 4, 6}
Anamorphosis threshold ct 0.04 ppm

Table 1 summarizes the setup of the baseline twin experiment (based on the baseline
observation network) used to evaluate the DA system. The truth is defined using the
reference estimate of the meteorological forcing parameters (Sect. 2.3): θt = θ(ref) =
(−41 ◦, 0.73m s−1)T. The ensemble size used in the ESMDA is set to Ne = 500, as shown
in Appendix A to be sufficient for minimizing sampling errors.
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4.2 Verification and calibration of the data assimilation system

This section presents the DA estimation results obtained with the baseline twin ex-
periments (Table 1), both in the control space (Sect. 4.2.1) and the model state space
(Sect. 4.2.3), in order to evaluate the added value of the ESMDA algorithm compared
with the standard EnKF algorithm and to calibrate the number of outer loops Na.

4.2.1 Parameter estimation step

First, the ability of the DA system to infer the meteorological forcing parameters is
evaluated, as the control vector θ = (αinlet, u∗)

T is the direct DA estimation target.
Table 2 shows that both ESMDA and EnKF reduce the wind direction bias compared
to the background. However, the two algorithms differ significantly with regard to the
friction velocity: the ESMDA is able to accurately estimate this parameter, whereas
the standard EnKF fails to update it. For both parameters, the ESMDA algorithm
demonstrates superior bias reduction as the number of outer loops (Na) increases. The
number of outer loops to achieve convergence remains small.

Table 2: Baseline twin experiment parameter estimation error ϵ = θ − θt and ensemble stan-
dard deviation σ, for the background and the analysis. Results are given for the standard EnKF
algorithm and the ESMDA algorithm with varying number of outer loops Na.

ϵ(αinlet) σ(αinlet) ϵ(u∗) σ(u∗)

(°) (°) (m s−1) (m s−1)

Background 16 25 -0.16 0.09

EnKF 6.4 8.8 -0.16 0.09

ESMDA – Na = 2 2.4 2.4 -0.10 0.08

ESMDA – Na = 4 0.9 1.8 -0.05 0.06

ESMDA – Na = 6 0.6 1.6 -0.04 0.05

Table 2 also shows that both EnKF and ESMDA provide realistic uncertainty esti-
mates. In all tests, the analysis errors and their error standard deviations are very close,
implying that the true parameters lie within the 95% confidence interval around the es-
timated parameters. These estimates are consistent in that the less accurate the analysis
the larger the estimated uncertainty. For instance, the EnKF does not reduce the uncer-
tainty on the friction velocity σ(u∗) compared to the background, as it is not able to infer
this parameter.

4.2.2 Parameter sensitivity analysis

To better understand the difficulty of estimating friction velocity and to gain further
insight into the DA results, the sensitivity of the predicted concentration to the inferred
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parameters is assessed using the first-order and second-order Sobol’ indices (1990):

Sαinlet
=

V(E(c|αinlet))

V(c)
,

Su∗ =
V(E(c|u∗))

V(c)
,

Sαinlet,u∗ =
V(E(c|αinlet, u∗))

V(c)
− Sαinlet

− Su∗ ,

(18a)

(18b)

(18c)

where V(·) denotes the variance and E(·|·) the conditional expected value. These Sobol’
indices quantify the fraction of concentration variance explained by each input parameter
as well as by the combined effect of the two parameters (the closer these indices are to one,
the greater the contribution.). In this study, these spatial indices are estimated using the
algorithm from Saltelli et al. (2010) with 8 192 POD–GPR model evaluations. Figure 5
shows that the variance of the tracer concentration prediction is mainly explained by the
inlet wind direction αinlet, while the friction velocity u∗ alone has a negligible contribution
except near the source. This result is obtained for each vertical level of the model, Fig. 5
showing a representative example at z = 1.6 m. This is because variations in αinlet cause
large changes in the plume position, while u∗ only has an inversely proportional effect on
the concentration. The higher sensitivity of concentration to wind direction explains why
the DA algorithms, especially EnKF, better infer this parameter than friction velocity
(Table 2).

Another noteworthy and rather unusual result is that the second-order Sobol’ index
reaches significant levels (Sαinlet,u∗ > 0.35 on average), far exceeding the first-order index
Su∗ linked to friction velocity (Fig. 5). This important coupled effect of the two parameters
αinlet and u∗ is explained by the fact that the concentration relation with u∗ is strongly
dependent on the wind angle: if the plume passes at a given location, then the local
concentration is approximately inversely proportional to u∗; if the location is outside the
plume, the local concentration becomes independent of u∗. Hence, the sensitivity of the
concentration to the friction velocity is conditioned by the wind direction, which explains
the significant gain in accuracy of the ESMDA over the standard EnKF due to its iterative
nature: during the first iteration, the ESMDA mainly corrects the predominant parameter
αinlet finding the most likely plume location; then the effect of u∗ becomes more observable
in the next iterations, allowing the ESMDA to infer it.

4.2.3 Propagation step to model state correction

In the ESMDA framework, the best estimate of the control vector is defined as the
mean of the analysis ensemble {θa

i }Ne
i=1 (Eq. 11). Using this mean estimate as input for

the surrogate model generates a new estimate of the concentration field corresponding to
the corrected meteorological forcing (Fig. 4). Figure 6 shows that the gain in accuracy
into the control space propagates well to the state space, with an analysis concentration
field very close to the true field when using the ESMDA with Na = 4 outer loops. This
demonstrates the ability of the DA system to propagate corrections from the parameter
space to the model state space (which is not directly estimated by the DA algorithm).
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Figure 5: Horizontal cuts at z = 1.6m of the Sobol’ index maps. (a) First-order index quantify-
ing the sensitivity of the concentration POD–GPR prediction to the wind direction αinlet. (b) First-
order index for the friction velocity u∗. (c) Second-order Sobol’ index showing the coupled effect of
αinlet and u∗. The blue hatched area corresponds to mesh nodes for wich 99% of the concentration
samples used to estimate the Sobol’ indices are under 10−4 ppm.
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Figure 6: Contour levels of tracer concentration for 1 ppm (a) and 0.01 ppm (b) at z = 1.6m
obtained in the baseline twin experiment (Table 1). Comparison between background estimates
(green lines), the analysis estimates obtained by the ESMDA with Na = 4 (red lines) and ground
truth (blue lines).
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4.2.4 Computational efficiency

The DA system appears to be highly cost-effective, with runtimes of 50 s for the EnKF
and 190 s for the ESMDA with Na = 4 outer loops (using a single Intel Ice Lake processor
core). For comparison, a single assimilation with the LES model and 10 members would
require 200 000 core hours. This illustrates the relevance of using a surrogate model and
proves that the proposed DA framework could be suitable for real-time applications. Note
that most of the execution time corresponds to the (Na ×Ne + 1) surrogate model calls,
and that this process could be significantly accelerated by parallelizing model calls in each
DA outer loop.

4.3 Robustness to the choice of the background

To evaluate the performance of the DA system in a systematic way, a Monte Carlo
experiment is carried out by evaluating both the EnKF and ESMDA (with Na = 4 outer
loops) for a range of background conditions, i.e. for 50 different sets of background pa-
rameters. Figure 7 summarizes the DA results in terms of analysis bias versus background
bias for the two control parameters, the inlet wind direction (a, b) and the friction velocity
(c, d).
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Figure 7: Absolute error of the EnKF (a, c) and ESMDA (b, d) parameter estimates |ϵa| =
|θa − θt| for varying background bias |ϵb| = |θb − θt|. The bias of the inlet wind direction αinlet

estimates is shown in (a, b) and is colored according to the bias of the friction velocity u∗. The
bias of the friction velocity u∗ estimates, colored by the bias of the inlet wind direction, is shown
in (c, d).
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The ESMDA systematically improves the wind direction estimation regardless of the
initial background bias. The gain in accuracy is less important for the EnKF. For some
samples, the analysis is even less accurate than the background (Fig. 7a, b). Furthermore,
the analysis correction of the wind direction tends to deteriorate when the initial back-
ground bias on the friction velocity ϵb(u∗) is large, for both EnKF and ESMDA. This is
explained by the fact that, during its first iteration, the DA algorithm tends to overcorrect
αinlet to explain deviations in the observations that are actually due to bias in u∗.

Regarding the friction velocity estimation, Fig. 7c confirms that the EnKF is not
able to correct the friction velocity regardless of the initial background bias. In contrast,
Fig. 7d shows that the ESMDA with Na = 4 outer loops significantly improves the friction
velocity estimation.

In conclusion, the twin experiments demonstrate that the ESMDA algorithm is more
accurate than the standard stochastic EnKF algorithm. Specifically, the iterative analysis
of the ESMDA allows the friction velocity u∗ to be inferred. This is not possible for the
EnKF due to insufficient observability. This is because the effect of u∗ on the observations
is coupled with the effect of the inlet wind direction, while having a lesser impact on
observations. Furthermore, using the POD–GPR surrogate model substantially reduces
the computational cost of the DA process and makes it possible to carry out a wide
range of twin experiments to: i) establish guidelines for the ESMDA parameters before
assimilating real measurements (Ne = 500 ensemble members and Na = 4 outer loops
in the following) ; and ii) demonstrate the robustness of the DA system to background
sampling errors.

5 Assimilation of the real MUST field observations

This section moves to the assimilation of the real tracer concentration measurements
from the MUST trial #2681829. Assimilating real observations introduces uncontrolled
model and observation biases, making the assimilation problem more challenging. The
same background parameters and observation network as in the baseline twin experiment
are retained (Table 1). The ESMDA algorithm settings (Na = 4, Ne = 500) follow the
twin experiments guidelines from Sect. 4.

The evaluation is carried out in two stages. First, the ability of the ESMDA to correct
the meteorological forcing parameters is assessed (Sect. 5.1). Then, it is determined
whether correcting these parameters improves the prediction of the tracer concentration
field (Sect. 5.2).

5.1 Estimation of the meteorological forcing parameters

The accuracy of the ESMDA algorithm is evaluated by comparing its estimation of
the meteorological forcing parameters θa to the reference parameters for this MUST trial,
θ(ref) = (−41 ◦, 0.73m s−1), which is independent of the DA experiment (Sect. 2.3).

Figure 8 shows that the ESMDA successfully corrects both the inlet wind direction
and the friction velocity, with the analysis ensemble averages being closer to the reference
than those of the background. However, there is a slight overcorrection of the inlet wind

direction compared to the reference (αa
inlet−α

(ref)
inlet = −4.5◦). This is due to bias in either

the prediction of tracer concentration or its measurement, as evidenced in Sect. 5.2.
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Figure 8: Background and analysis ESMDA ensembles obtained when assimilating the real
MUST data. The associated normal and log-normal PDF of the inlet wind direction and friction
velocity are represented in the upper and right panels, respectively. The blue plus symbol indicates

the reference parameters, (α
(ref)
inlet , u

(ref)
∗ )T = (−41 ◦, 0.73ms−1)T, derived from unassimilated wind

velocity measurements. The blue shaded areas represent the associated measurement uncertainty.

Assimilating tracer concentration measurements also reduces the uncertainty in the
meteorological forcing compared to the background, particularly with regard to the wind
direction (Fig. 8). Furthermore, the ESMDA uncertainty estimates are realistic as they
are of the same order of magnitude as the uncertainty of the reference meteorological
measurements θ(ref). This good performance is partly due to the realistic observation
error model R adopted (see Appendix B).

It should be noted that the reference wind direction is outside of the confidence interval
provided by the analysis ensemble |αa

inlet−α
(ref)
inlet | > 3σ(αa

inlet) (this is not the case for the
friction velocity). This lack of reliability, which was not observed in the twin experiments,
suggests that other forms of uncertainty (e.g. model bias) might involved and not captured
by the ESMDA.

5.2 Evaluation of the updated tracer concentration prediction

This section assesses whether the ESMDA parameter estimation improves the predic-
tion of the quantity of interest, i.e. the time-averaged tracer concentration field.

5.2.1 Dispersion prediction accuracy metrics

To quantify the gain in accuracy achieved with DA, the set of Nobs observed time-
averaged concentrations co is compared with the colocated DA estimates cp, defined as the

model prediction associated with either the background parameters cp = MPOD−GPR

(
θb
)

or the ESMDA ensemble-averaged analysis cp = MPOD−GPR

(
θa
)
. This is done using
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the standard statistical metrics for air quality model evaluation (Chang and Hanna 2004),
including the normalized mean square error (NMSE), the fraction of predictions within a
factor of two of the observations (FAC2), and the geometric variance (VG):

NMSE =
⟨ (co − cp)2 ⟩
⟨co⟩ ⟨cp⟩ , (19)

FAC2 =
1

Nobs

Nobs∑
k=1

1FAC2(k) with 1FAC2(k) =

{
1 if 0.5 ≤ cpk/c

o
k ≤ 2,

0 else,
(20)

VG = exp
(
⟨ (ln c̃o − ln c̃p)

2 ⟩
)
, (21)

where ⟨·⟩ denotes the average over the Nobs samples. The measurements below the instru-
ment detection threshold ct (0.04 ppm for DPIDs and 0.01 ppm for UVICs) are excluded
from the metrics calculations. For each metric, the perfect and acceptable scores according
to Chang and Hanna (2004) are indicated in Table 3.

Table 3: Air quality metrics quantifying the global agreement between the background and analy-
sis concentration predictions and experimental measurements. The scores obtained by the reference
LES model prediction MLES(θ

(ref)) are also given for comparison. The metrics are calculated
separately over the set of the assimilated observations and over the validation set (made of unas-
similated observations).

NMSE FAC2 VG

Perfect score 0 1 1

“Acceptable” (Chang and Hanna 2004) < 4 > 0.5 < 1.6

Assimilated obs.

Background 4.12 3/9 ≈ 33% 7.47

Analysis 0.04 9/9 = 100% 1.02

Reference LES 0.62 5/9 ≈ 56% 2.16

Validation obs.

Background 1.37 11/38 ≈ 29% 23.6

Analysis 0.43 18/38 ≈ 47% 2.73

Reference LES 0.31 22/38 ≈ 58% 2.12

For verification purposes, the metrics are first calculated over the set of the assimilated
observations (DPID sensors from towers B, C, and D at z = 1, 2, 3m). Table 3 shows
that the updated concentration estimate is very close to the assimilated observations, as
evidenced by the near perfect NMSE, FAC2, and VG scores.

Then, the metrics are calculated over all the unassimilated observations referred to
as validation observations. Table 3 shows that the updated concentration estimate is
significantly improved compared to the background. The ESMDA highly reduces the
NMSE and VG quadratic errors, reaching the acceptable levels of accuracy defined by
Chang and Hanna (2004). However, this is not the case for the FAC2 metric, for which only
47% of the updated predictions fall within a factor of two away of the observations (the
acceptable limit is 50%). The analysis cannot reach the 58% FAC2 score obtained by the
reference LES prediction MLES(θ

(ref)), suggesting that the DA system may be overfitting
the assimilated observations. It is therefore necessary to further investigate the sensitivity
of the analysis estimate to the observation locations to find possible explanations for this
DA behavior.
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5.2.2 Tracer concentration horizontal and vertical profiles

To better identify where the DA update lacks accuracy, the horizontal and vertical
tracer concentration profiles associated with the background and analysis ensembles are
examined.
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Figure 9: Vertical profiles of time-averaged concentration predicted by the POD–GPR model
using the background (green dash-dotted) and analysis (red solid) ensemble-mean parameters. Pre-

dictions from the reference parameters θ(ref) are shown as blue dotted lines. Results are shown
for towers B, T, C, and D (Fig. 1). Crosses and triangles indicate assimilated and unassimilated
measurements, respectively. Error bars reflect ABL internal variability. Red shaded areas repre-
sent the 95% confidence intervals from the analysis ensemble and POD–GPR uncertainty.
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Figure 9 shows that the DA system successfully recalibrates the POD–GPR prediction
with the observations at towers B, C and D compared to the background prediction and
to the reference prediction obtained with the reference meteorological forcing parameters
θ(ref). This is consistent with the very convincing metrics scores obtained over the assim-
ilated observations (Table 3). Note that the spatial consistency of the model predictions
improves the agreement with the unassimilated observations located higher up on towers
B, C and D. At tower T, where no observation is assimilated, the DA results are less
good with an overall underestimation of the concentration. Yet, the shape of the vertical
profile predicted after the analysis is more consistent than that obtained with the back-
ground. Note that the reference LES prediction MLES(θ

(ref)) also underestimates tracer
concentration at tower T.

Using the Ne = 500 ensemble members of the ESMDA, the uncertainty in the mete-
orological forcing parameters is propagated through the surrogate model to quantify the
uncertainty on the tracer concentration prediction. In addition, for each ensemble mem-
ber, the POD–GPR model provides a probabilistic distribution of the concentration field,
which accounts for the atmospheric internal variability (Lumet et al. 2025b). Figure 9
shows that the resulting total uncertainty in the tracer concentration prediction explains
well the differences between the model prediction and the observations from towers B,
C, and D, but not from tower T. This suggests that there are other forms of uncertainty
involved that limit model prediction accuracy. Note that there may be an inconsistency
between the measurements from the DPID sensors at tower T and the UVIC sensors at
towers B, C, and D.

Regarding the horizontal profiles of the tracer concentration, Fig. 10 confirms that
the DA process improves the prediction compared to the background, while no observa-
tions are assimilated on the z = 1.6-m plane. This is mainly due to the wind direction
correction, which corrects the originally misaligned plume centerline direction. However,
despite the good plume shape prediction, the analysis tends to underestimate concentra-
tion. As before, these differences from the DPID measurements are not explained by the
meteorological forcing uncertainty and internal variability. The same underestimation is
obtained by the reference LES prediction. This shows that the lack of DA accuracy is due
to an internal model bias, rather than an incorrect parameter correction. In particular,
the fact that the model underestimation increases with the distance from the emission
source may indicate that the LES model predicts a plume spreading too much at this
height, as already observed in Lumet et al. (2024b).

In conclusion, assimilating the real MUST observations improves tracer concentration
prediction by inferring the meteorological forcing parameters. This results in acceptable
air quality metrics (except for the FAC2 that is slightly below the acceptable limit of 50%)
and a predicted plume shape that is consistent with unassimilated observations. However,
since the DA system does not directly correct the model state but only input parameters,
the accuracy of the analysis prediction remains limited by internal model biases. Although
interesting and with great potential to overcome this issue, it is beyond the scope of this
work to develop an estimation approach able to jointly estimate the model state and
the model parameters (Zhang et al. 2019). To gain a better understanding of the DA
system behavior, this study opted to conduct a more in-depth analysis of observability.
This involves examining the extent to which the quality of the DA results depends on
the choice of assimilated observations, as well as investigating whether better DA results
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Figure 10: Horizontal profiles of time-averaged concentration predicted by the POD–GPR model
using the background (green dash-dotted) and analysis (red solid) ensemble-mean parameters. Pre-

dictions from the reference parameters θ(ref) are shown as blue dotted lines. Each row corresponds
to a DPID sensor line (Fig. 1). Triangles indicate unassimilated measurements with error bars
representing the ABL variability. Red shaded areas represent the 95% confidence intervals from
the analysis ensemble and POD–GPR uncertainty.

could be achieved with certain observation network configurations. This aims to provide
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insight into LES model structural errors and areas for model improvement.

6 Sensitivity to the observation network

While previous DA experiments were carried out using the same baseline observation
network (Sect.3.4.1), the following analysis investigates how the design of the observation
network, i.e. the number and location of the assimilated sensors, affects DA accuracy in
relation to system observability. The theoretical sensitivity to the observation network is
first assessed using twin experiments (Sect.6.1), before turning to real data (Sect. 6.2).

6.1 Theoretical impact of observations using twin experiments

To assess the DA sensitivity to the observation network, the baseline twin experiment
(Table 1) is reproduced, while varying the observation network design, in terms of num-
ber of sensors (Nobs) and in terms of location of these sensors (among the 47 sensors
that capture a significant signal during the MUST campaign). Five different sizes of
sensor network are tested with Nobs ∈ {3, 6, 9, 15, 30}. For each network size, 100 sensor
arrangements are randomly generated and tested, resulting in a total of 5 × 100 DA ex-
periments. This was found sufficient to obtain statistically converged results (not shown).
As for each ESMDA experiment Ne = 500 ensemble members and Na = 4 outer loops are
used, this observability study requires a total of one million surrogate model predictions
(Na ×Ne = 2000 model predictions for each of the 500 DA experiments), made possible
through the use of a surrogate-based DA system.
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Figure 11: Distributions of ESMDA ensemble-averaged estimates of wind direction αinlet (a)
and friction velocity u∗ (b) for varying numbers of assimilated observations Nobs. Each violin plot
represents 100 DA experiments with different synthetic observation combinations. True values
(blue dotted lines), background estimates (green dashed lines), and baseline sensor network results
(yellow crosses) are also shown.

Figure 11 shows the analysis distribution of the parameters θ = (αinlet, u∗)
T estimated
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by the ESMDA over the different sensor networks. The results obtained using the baseline
sensor network are indicated by yellow crosses (Nobs = 9). When assimilating a small
number of sensors (Nobs ≤ 9), the analysis estimates highly depend on the location of
these sensors, with a standard deviation reaching 5.4◦ for the wind direction estimates
when Nobs = 3. Conversely, the variability on the mean analysis estimates decreases as
the number of assimilated observations increases. This demonstrates that the information
provided by the observations is sufficiently detailed when Nobs > 9 to overcome the local
effects of wind/container interactions on the tracer concentration and retrieve physical
parameters of the LES model that have a global meaning. Indeed, when there are too
few observations, these parameters are adjusted to match the local effects measured by
these observations. These effects can differ greatly within the canopy and explain the
variability in the analysis estimates observed in Fig. 11 for Nobs ≤ 9.

Figure 11 also shows that on average, the ESMDA accurately infers the wind direction
regardless of the number of sensors Nobs, but is unable to correct the friction velocity
bias when Nobs < 6. These shortcomings can be overcome by increasing the number of
assimilated sensors, as this both increases the robustness of the ESMDA analysis to sensor
location and improves the friction velocity mean estimates.

6.2 Analysis of the impact of the real MUST field observations

In this section, the observation network sensitivity analysis from Sect. 6.1 is repro-
duced with the actual MUST experimental data. Unlike in the twin experiments, the DA
process is now subject to observational and model biases, which provides a more realistic
assessment of the effect of the observation network design on the DA system and provide
further insights into its observability property.

For each size of sensor network Nobs ∈ {3, 6, 9, 15}, the ESMDA with Na = 4 outer
loops and Ne = 500 ensemble members is used to assimilate the real MUST measurements
from 300 different sensor networks. Among these networks, 100 are obtained by randomly
selecting Nobs observation positions from the 47 possible ones as in Sect. 6.1 (Fig. 1); 100
networks correspond to horizontal sensors only, i.e. DPID sensors on the plane z = 1.6m;
and 100 networks correspond to vertical sensors only, i.e. from towers B, C, D, and T.

As shown by the red distributions (combining horizontal and vertical observations) in
Fig. 12, the DA system correctly estimates the wind direction, regardless of the size of
the observation network. However, it fails to correct the friction velocity on average. The
analysis even tends to worsen the friction velocity estimates compared to the background.
This issue gets worse when the number of assimilated observations Nobs increases.

Figure 12 also shows that the distribution of the friction velocity estimates becomes
bimodal when Nobs > 3. This issue was not present in twin experiments (Fig. 11b).
This can be explained by the occurrence of two distinct cases. On the one hand, when
the observation network mainly consists of DPIDs along the plane z = 1.6m (horizontal
sensors), the ESMDA considerably underestimates the friction velocity. On the other
hand, when the observation network mainly consists of sensors from the vertical towers
B, C, D and T (vertical sensors), the ESMDA significantly improves friction velocity
estimation. This behavior is evidenced by the distinct distributions over the horizontal
and vertical subsets in Fig. 12b (blue and yellow distributions). This can be explained by
the tendency of the model to underestimate tracer concentration at z = 1.6-m altitude
(Fig. 10). When these DPID sensor measurements are assimilated, the ESMDA artificially
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Figure 12: Comparison of ESMDA ensemble-averaged estimates of wind direction αinlet (a),
friction velocity u∗ (b), and FAC2 metric (c) for varying numbers of assimilated observations Nobs.
Shaded violin plots show Is it fair to say that the uniform heights of the containers and regular ar-
rangement of the containers yield a log-normal distribution for concentration observations? If yes,
how does this translate to a heterogeneous distribution of buildings? Can this ESMDA approach
be applied to such a complex array of buildings, which is usually the case in dense metropolitan
cities? Please comment on this to demonstrate the practicality of this approach. distributions from
300 DA experiments: all sensor networks (red), horizontal-only sensors, i.e. DPIDs at z = 1.6m
(blue), and vertical mast-only sensors (yellow). Reference values (blue dotted lines), background
estimates (green dashed lines), and baseline sensor network results (yellow crosses) are also shown.

reduces the friction velocity in order to compensate for model underestimation and to
better match the observed concentration since the predicted concentration is inversely
proportional to friction velocity. In other words, friction velocity loses its physical meaning
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and becomes an adjustment variable of the system due to other biases in the model that
are not accounted for. These two distinct cases also explain why the sensitivity to the
observational network remains high when assimilating Nobs = 15 observations: the two
observational subsets provide conflicting information on the meteorological parameters
and induce an equifinality issue, which makes the inverse problem partly ill-posed.

Even if the friction velocity is not properly estimated, the DA system still leads to good
FAC2 scores regardless of the observation network (Fig. 12c), the FAC2 score being above
50% in most cases and thereby satisfying the acceptability criterion of Chang and Hanna
(2004). The same is true when only assimilating DPID measurements at z = 1.6m, despite
the artificial friction velocity correction. This is because the friction velocity has less
influence on the predicted concentration field, and thus on FAC2, than the wind direction,
which is accurately estimated by the ESMDA. Good scores can thus be obtained for the
wrong reasons; in this case, the overestimation of wind friction velocity compensates for
the fact that the LES model overestimates the plume dispersion. This highlights the
limitations of using only global metrics to assess model performance.

In conclusion, the assimilation of actual MUST data highlights the limitations of ideal-
ized twin experiments in optimizing sensor placement (i.e. identifying the most informa-
tive observations for the uncertain parameters to be inferred). It is shown that increasing
the number of assimilated observations does not necessarily reduce the spread of the DA
estimates because of conflicting measurements and compensating effects. This implies
that conclusions from twin experiments may not be applicable to field conditions when
model and observation biases are present. Nevertheless, the sensitivity analysis carried out
for real field measurements has demonstrated the robustness of the ESMDA system. This
system can accurately estimate wind direction and improve concentration field prediction
regardless of the location of the assimilated sensors.

7 Discussion

This study provides a proof-of-concept of a surrogate-based ensemble DA system that
efficiently reduces uncertainties in meteorological forcing parameters and improves ur-
ban pollutant dispersion predictions. This system is validated by assimilating tracer
concentration measurements from the MUST simplified urban geometry in near-neutral
atmospheric conditions. As the quantities of interest are stationary, a single DA cycle
is performed. Nevertheless, the same system could be applied sequentially with sliding
averages to capture large-scale temporal variations in meteorological forcing and their
impact on pollutant dispersion.

Application to more realistic, heterogeneous, urban geometries and broader parameter
ranges would require construction of a new LES training database adapted to the spe-
cific case study. The number of degrees of freedom of the DA system, limited here to
two parameters, could also be expanded to refine the representation of the meteorological
forcing (Defforge et al. 2021), to account for variability in atmospheric stability, or to cor-
rect pollutant source parameters (Mons et al. 2017). Increasing the number of degrees of
freedom, however, may challenge the ESMDA assumption of normally-distributed errors.
This limitation could be overcome thanks to the low computational cost of the POD–GPR
surrogate model, which makes more advanced ensemble-based methods such as particle
filters (Gordon et al. 1993) computationally feasible.

28



This study provides insights into the origins of uncertainty in LES pollutant dispersion
predictions. Correcting meteorological forcing parameters significantly improves plume
representation in the vertical direction and near the source. However, persistent under-
estimation of concentration close to the ground and downstream cannot be explained
by forcing conditions or internal variability alone. This finding challenges the common
assumption that LES structural model uncertainties are negligible compared to forcing un-
certainties (Garćıa-Sánchez et al. 2014; Schatzmann and Leitl 2011; Dauxois et al. 2021),
and underscores the need for systematic sensitivity analysis and multi-model comparison.

Within the standalone parameter estimation framework, the DA system tends to over-
correct the meteorological forcing parameters in order to compensate for these structural
model biases. This behavior reduces the reliability of the corrected fields and highlights
the importance of explicitly representing model uncertainties. One possible solution is to
sample forecasts from multiple LES models within the ESMDA framework (Houtekamer
et al. 2005; Ehrendorfer 2007), thereby incorporating model diversity into the assimila-
tion process. Another promising solution is to carry out joint state–parameter estimation
(Evensen 2009; Smith et al. 2013; Zhang et al. 2019; Ruckstuhl and Janjić 2020). This
would allow errors in the plume model predictions to be corrected directly and provide
more realistic parameter estimates, as the parameters would no longer be adjustment
variables.

Finally, this study confirms that this type of DA system for urban flow prediction is
highly sensitive to the design of the observation network (Mons et al. 2017; Sousa et al.
2018). Moreover, while classical twin experiments suggest that increasing the number of
sensors improves estimation robustness, results based on real MUST measurements show
that biases in the model and/or observations can lead to contradictory analysis trends
depending on sensor placement. This calls into question the robustness of optimal sensor
placement strategies derived solely from idealized numerical experiments. This highlights
the need to explicitly consider possible model biases in future methodologies.

8 Conclusion

This study demonstrates the feasibility and benefits of a surrogate-based ensemble DA
system for LES of urban pollutant dispersion, through the MUST field campaign. The sys-
tem infers meteorological forcing parameters (wind direction and friction velocity) through
assimilation of in-situ pollutant concentration measurements using the ESMDA algorithm
(Emerick and Reynolds 2013). The computational burden of LES in a multi-query un-
certainty quantification context is mitigated by the POD–GPR surrogate model (Lumet
et al. 2025b).

The substantial speed-up provided by the surrogate model enables large ensemble size,
thereby improving DA estimation accuracy, while making the DA system tractable for
real-time applications. It is also a strength for carrying out a detailed validation of the
DA system. The key findings are:

◦ The iterative nature of ESMDA systematically improves the estimation of meteo-
rological forcing parameters compared to the standard stochastic EnKF, ensuring
accurate parameter correction regardless of background bias. In particular, the ES-
MDA better tackles nonlinear effects, such as the coupled interaction of friction
velocity and wind direction on the plume. This highlights the suitability of the
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easy-to-implement ESMDA algorithm for nonlinear parameter estimation problems
in CFD urban flow modeling.

◦ LES plume predictions are improved by the DA system near the source and in the
vertical, but persistent underestimation near the ground and downstream remains.
These errors cannot be explained solely by meteorological forcing biases or internal
variability. This indicates significant structural uncertainties in LES that should be
investigated and accounted for in future developments.

◦ DA performance is highly sensitive to sensor placement, and this sensitivity is under-
estimated when assessed with synthetic measurements. The combination of model
and real measurement biases leads to contradictory corrections depending on sensor
locations. This shows that sensor optimization strategies based solely on idealized
twin experiments may be overly optimistic.

This proof-of-concept study confirms that surrogate-based DA can reduce uncertainty
in urban LES predictions, while also revealing critical challenges related to observation
network design and LES structural modeling that must be addressed in future research.
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Appendix A Reducing background sampling error using the
Halton low-discrepancy sequence

A limitation of the EnKF and ESMDA algorithms is the use of emsembles of lim-
ited size, which introduces sampling errors (Ehrendorfer 2007; Asch et al. 2016). While
sampling errors due to observation perturbation (Eq. 10) can be avoided by using more
sophisticated DA implementations such as the ensemble transform Kalman filter (Bishop
et al. 2001; Houtekamer and Zhang 2016), sampling errors due to background ensemble
sampling (Eq. 8) remain.

To assess the impact of background sampling errors in the present case study, the vari-
ability of the DA estimates is evaluated when the background sampling seed is changed for
a given ensemble size. This is done by replicating the baseline twin experiment (Table 1)
with different seeds. It was found that between 500 seeds for Ne = 10 and 100 seeds for
Ne = 1, 000 was enough to reach statistical convergence. It is worth noting that sampling
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errors due to observation perturbations (Eq. 10) and model error (Eq. 9) were found to
be significantly less important. Attention is therefore directed to background sampling in
the following.
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Figure A.1: Wind direction αinlet and friction velocity u∗ estimated by the EnKF (a, c) and
by the ESMDA (b, d) in the baseline twin experiment (Table 1) and for varying ensemble size
Ne. The background estimates and the true values are shown as green dotted lines and blue dotted
lines, respectively. The red solid lines correspond to the averaged analysis errors, estimated by a
Monte Carlo procedure with varying random seeds to sample the background ensemble. The red
shaded area represents the associated 95% confidence interval of the analysis error. The black
dashed-dotted lines correspond to the analysis estimate obtained when sampling the background
ensemble with the Halton sequence.

Figure A.1 shows that, as expected, the spread of the DA analysis errors decreases with
the ensemble size Ne for both EnKF and ESMDA. For a given ensemble size, this spread is
smaller for the ESMDA than for the EnKF. Nevertheless, even at a rather large ensemble
size of Ne = 500 for only 2 control parameters, the effect of background sampling errors
remains significant as it induces deviation of the EnKF αinlet-estimate of up to 1.8°.

To reduce the sensitivity of the analysis on the background sampling, it is possible to
use a quasi-Monte Carlo approach or a quasi-random number sequence to generate the
background ensemble (Hirvoas et al. 2021). In this work, as the control parameter space
is low-dimensional (p = 2), the Halton sequence (1964) is used. As a low-discrepancy
sequence, this sequence covers more efficiently the uncertain space than a purely random
sampling by avoiding redundant samples in the same areas.
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In practice, the background ensemble is generated as follows: first, the Halton sequence
is used to sample the unit disk [0, 1]p with p = 2 the dimension of the control space; then
the background ensemble {θb

i}Ni=1 is generated by mapping the Halton samples with the
quantile function of the Gaussian distribution assumed in the EnKF–ESMDA framework
(θb

i ∼ N (θb,B), 1 ≤ i ≤ N , B being the background error covariance matrix). In the
present case, this can be done independently for each component since the B-matrix is
diagonal.

Figure A.1 shows that the parameters estimated when generating the background
ensemble with the Halton sequence are very close to the Monte Carlo estimates averaged
over varying background sampling seeds, both with the EnKF and the ESMDA algorithms.
Using the Halton sequence provides a convincing way to suppress the variability of the
analysis induced by background sampling. It should be recommended as good practice
when employing ensemble DA methods, to prevent the analysis estimates from depending
on the chosen background sampling seed

Appendix B Observation error covariance modeling

Observation errors come from three independent sources: i) the instrumental errors,
ii) the representativeness errors, which correspond to errors due to the discretization of
the system state and the related interpolations in the observation operator, and iii) the
aleatory uncertainty due to the internal variability of the ABL, which has been shown to
be significant in the MUST campaign (Schatzmann et al. 2010; Lumet et al. 2024b).

Given the fine grid resolution used to represent the system state, the representativeness
errors are negligible. Instrumental errors were not reported in the MUST technical report
(Biltoft 2001); it is therefore assumed that the UVIC and DPID sensors used during the
MUST campaign have the same uncertainty as the miniPID 200B model from the same
manufacturer, i.e. εµ = 5% relative uncertainty (Aurora 2012).

To account for ABL internal variability, which has not been considered in previous
DA studies, the stationary bootstrap procedure based on resampling of sub-averages pro-
posed in Lumet et al. (2024b) is employed. This method involves generating B replicates
{µb(y

o)}Bb=1 of the observations yo based on the original experimental time series. Using
these replicates, which are representative of the changes in the time-averaged value of the
200-s analysis period induced by the ABL internal variability, the observation internal
variability error covariance matrix RIV can be estimated as

RIV =
1

B − 1

B∑
b=1

(
µb(y

o)− µ̂(yo)
)(

µb(y
o)− µ̂(yo)

)T
, (22)

with µ̂(yo) =
1

B

B∑
b=1

µk(y
o) the ensemble mean of the replicates. To limit sampling er-

rors, a very large number of bootstrap replicates is used (B = 50 000). The stationary
bootstrap block length is set equal to the average correlation time over each concentra-
tion measurement (18.5 s here). One benefit of this approach is that it provides estimates
of the cross-covariance terms of the observation error covariance matrix R. These cross-
covariance terms characterize the spatial correlations of the errors between sensors. These
correlations are often assumed to be zero due to a lack of information (Sousa et al. 2018;
Aristodemou et al. 2019; Defforge et al. 2021).
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Figure B.1: Observation error covariance matrix accounting for the sensor measurement er-
ror and the internal variability error estimated using bootstrap replicates of the log-transformed
concentration measurements without (a) and with normalization (b). Rows and column indices
correspond to the sensors from which measurements are assimilated for the baseline observation
network, arranged in the following order: tower C (1, 2, 3m), B (1, 2, 3m), and D (1, 2, 3m).

In summary, the observation error covariance matrix R, which accounts for both in-
strumental and internal variability errors, is defined as

R = Rµ +RIV = σ2
µ(y

o) I+RIV, (23)

where σ2
µ(y

o) = ln
(
1 + (εµ)

2
)
is the variance of the log-transformed concentration mea-

surement errors, assuming that the concentration is log-normally distributed. Figure B.1
shows the resulting R-matrix for the baseline observation network (Sect. 3.4.1). Since
the instrumental error is assumed to be independent for each sensor, the R-matrix has
large values on its diagonal, while the extra-diagonal coefficients correspond to error cor-
relations due to the ABL internal variability. The distribution of these covariances is
physically-consistent since they decrease with increasing distance between the sensors.
Three blocks of high covariances emerge, corresponding to the three groups of sensors
on towers B, C, and D. Note that the errors of the sensors on the towers B and C are
significantly correlated since these towers are aligned with the flow direction, while this
is not the case for the sensors on tower D as they are isolated at the edge of the plume
(Fig. 1).
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