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Abstract This study evaluates a surrogate modeling approach that provides rapid en-9

semble predictions of air pollutant dispersion in urban environments for varying meteoro-10

logical forcing, while estimating irreducible and modeling uncertainties. The POD–GPR11

approach combining Proper Orthogonal Decomposition (POD) and Gaussian Process Re-12

gression (GPR) is applied to emulate the response surface of a Large-Eddy Simulation13

(LES) model of the Mock Urban Setting Test (MUST) field-scale experiment. We de-14

sign and validate new methods for i) selecting the POD-latent space dimension to avoid15

overfitting noisy structures due to atmospheric internal variability, and ii) estimating the16

uncertainty in POD–GPR predictions. To train and validate the POD–GPR surrogate17

in an offline phase, we build a large dataset of 200 LES 3-D time-averaged concentration18

fields, which are subject to substantial spatial variability from near-source to background19

concentration and have a very large dimension of several million grid cells. The results20

show that POD–GPR reaches the best achievable accuracy levels, except for the highest21

concentration near the source, while predicting full fields at a computational cost five22

orders of magnitude lower than an LES. The results also show that the proposed mode23

selection criterion avoids perturbing the surrogate response surface, and that the uncer-24
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tainty estimate explains a large part of the surrogate error and is spatially consistent with25

the observed internal variability. Finally, POD–GPR can be robustly trained with much26

smaller datasets, paving the way for application to realistic urban configurations.27

Keywords Surrogate modeling · Uncertainty quantification · Microscale pollutant dis-28

persion · Urban flow · Large-eddy simulation · Internal variability29

1 Introduction30

Accidental releases of pollutants into the atmosphere, such as from industrial accidents,31

can degrade air quality and have significant short- and long-term health impacts (EEA32

2020; Manisalidis et al. 2020). In urban environments, these risks are exacerbated by33

high population density and reduced ventilation due to the urban canopy, leading to local34

pollution peaks (Fernando et al. 2001; Klein et al. 2007; Pasquier et al. 2023). For accurate35

mapping of these peaks and associated exposures, it is necessary to develop microscale36

dispersion models that take into account i) the effect of urban buildings on the local flow,37

and ii) the inherently multiscale and turbulent nature of the Atmospheric Boundary Layer38

(ABL).39

To gain relevant insight into these processes, there is a growing consensus in the re-40

search community for the use of Computational Fluid Dynamics (CFD) (Blocken 2015;41

Tominaga et al. 2023). Advanced models based on Reynolds-Averaged Navier-Stokes42

(RANS) and Large-Eddy Simulation (LES) are able to represent complex flow structures,43

in particular due to the interactions between the atmosphere and the built environment.44

However, their use in operational applications remains limited because their high com-45

putational cost prevents them from being used in real time, for example in emergency46

response. Moreover, they still suffer from a lack of accuracy compared to field and wind47

tunnel measurements due to the large uncertainties involved (Schatzmann and Leitl 2011;48

Blocken 2014; Dauxois et al. 2021). These uncertainties can be classified into three dif-49

ferent groups:50

◦ boundary condition uncertainties due to measurement and representativeness errors51
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in calibration data, and to boundary condition modeling assumptions, in relation52

to: i) the meteorological forcing (Garćıa-Sánchez et al. 2014; Lucas et al. 2016; Wise53

et al. 2018), ii) the urban geometry representation (Santiago et al. 2010; Montazeri54

and Blocken 2013; Gromke et al. 2016), and iii) the pollutant source (Winiarek et al.55

2012; Spicer and Tickle 2021);56

◦ structural modeling uncertainties, inherent to the model solver and its underly-57

ing modeling assumptions, mainly related to turbulence modeling (Tominaga and58

Stathopoulos 2007; Blocken et al. 2008; Yue Yang and Wang 2008; Tominaga and59

Stathopoulos 2009; Gorlé and Iaccarino 2013; Gorlé et al. 2015; Xiao et al. 2016);60

◦ aleatory uncertainties, mostly due to the turbulent and therefore stochastic nature61

of the ABL, and referred to as internal variability, which results in an irreducible62

uncertainty and is largely responsible for the discrepancies between field measure-63

ments and CFD model predictions (Schatzmann and Leitl 2011; Neophytou et al.64

2011; Antonioni et al. 2012; Garćıa-Sanchez et al. 2018; Dauxois et al. 2021; Lumet65

et al. 2024b).66

In this work, we focus on atmospheric uncertainties, i.e. in how to represent the impact67

of large-scale atmospheric forcing uncertainties and internal variability on microscale LES68

field predictions. We have chosen not to consider structural modeling uncertainties, as69

these have been extensively studied and remain small in the LES context. Instead, we have70

chosen to investigate how to design a surrogate modeling approach to quantify boundary71

condition uncertainties in LES, while accounting for internal variability. To our knowledge,72

the coupling between these two sources of uncertainty has not yet been studied, while this73

is one challenge expressed by Dauxois et al. (2021) and Wu and Quan (2024).74

Surrogate modeling, also known as reduced-order modeling, aims at accurately emulat-75

ing the response surface of complex and expensive numerical models, while significantly76

reducing computational time. By enabling real-time and large ensemble predictions, sur-77

rogate modeling is well suited to address the dual challenges of high cost and uncertainty78

in LES models, making it a hot topic of research in the CFD field (Lassila et al. 2014;79

Vinuesa and Brunton 2022). For parametric studies, surrogate models are mostly based80
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on fully data-driven approaches, which consist of learning the response surface of the81

CFD model from a dataset of reference simulations precomputed during an offline phase,82

to then provide fast predictions during an online phase. They have been successfully used83

to emulate urban wind and/or pollutant dispersion, with respect to urban geometry (Wu84

et al. 2021; Huang et al. 2022; Mendil et al. 2022; Kastner and Dogan 2023), or mete-85

orological forcing and pollutant source (Margheri and Sagaut 2016; Xiang et al. 2021;86

Nony et al. 2023). Surrogate models are therefore valuable for ensemble prediction in87

more complex frameworks such as urban design optimization (Wu et al. 2021; Wu and88

Quan 2024), sensitivity analysis (Cheng et al. 2020; Fellmann et al. 2023), uncertainty89

quantification (Garćıa-Sánchez et al. 2014, 2017), and data assimilation (Mons et al. 2017;90

Sousa et al. 2018; Sousa and Gorlé 2019; Lumet 2024).91

While surrogate models have proven to be valuable tools for dealing with uncertainties92

related to CFD model boundary conditions, few studies have addressed the representation93

of internal variability, which is at least as important (Neophytou et al. 2011; Antonioni94

et al. 2012; Lumet et al. 2024b). Moreover, surrogate models introduce a new form of95

structural uncertainty: the model reduction error, i.e. the error of the surrogate model96

relative to the full-order model. Our aim is to evaluate the model reduction error in a97

comprehensive and robust way, and to assess the ability of the surrogate model to retrieve98

reliable information on internal variability from the LES dataset and compare it with the99

model reduction error.100

To this end, we adopt a surrogate modeling approach called POD–GPR (Marrel et al.101

2015), which combines Proper Orthogonal Decomposition (Sirovich 1987; Berkooz et al.102

1993) and Gaussian Process Regression (Rasmussen et al. 2006). It is a robust and stan-103

dard method that has already been used for urban wind and pollutant dispersion predic-104

tion (Xiao et al. 2019; Xiang et al. 2021; Weerasuriya et al. 2021; Masoumi-Verki et al.105

2022; Nony et al. 2023; Fellmann et al. 2023). In this study, we construct a POD–GPR106

model for the MUST experiment of propylene dispersion in a simplified urban canopy107

(Yee and Biltoft 2004). For this purpose, we generate a large dataset of 200 LES using108

the model validated by Lumet et al. (2024b) by varying the wind boundary forcing. We109
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choose LES over the more common and less expensive RANS approach because: i) LES110

is expected to reduce structural uncertainties due to turbulence modeling compared to111

RANS (Gousseau et al. 2011; Garćıa-Sanchez et al. 2018), and ii) LES provides instanta-112

neous snapshots of the most energetic atmospheric eddies and can thus be used to estimate113

the effect of the microscale internal variability of the ABL on tracer dispersion (Lumet114

et al. 2024b), which is central to the objective of this study.115

The novelty of the proposed surrogate modeling approach is related to the POD latent116

space, i.e. the reduced space compressing the LES information, and is twofold. First,117

we define a method to choose a priori the POD-latent space dimension, based on the118

projection of the internal variability into the latent space. Secondly, knowing the internal119

variability in the LES data and using regression uncertainty estimates from Gaussian pro-120

cesses, we develop a mathematical framework for propagating these uncertainty estimates121

from the POD latent space to the physical space to help interpret the uncertainty results,122

which to our knowledge has been little studied in physical applications.123

This article is structured as follows: Section 2 briefly introduces the learning dataset124

of LES simulations. Section 3 describes the POD–GPR surrogate modeling approach and125

introduces our methods to estimate prediction uncertainty and select the latent space126

dimension. Finally, Section 4 provides a comprehensive validation of the POD–GPR127

predictions, uncertainty estimates, and ability to handle reduced-size training datasets.128

2 Learning dataset of large-eddy simulations129

This section summarizes the key points of the LES model for the MUST experiment,130

which has been extensively validated in previous work (Lumet et al. 2024b) and which is131

used here to build the surrogate learning dataset. Details are given on the choice of the132

parameter space, the field quantities of interest and the associated internal variability.133

2.1 The MUST field campaign134

MUST is a field-scale experiment conducted in September 2001 at the US Army Dug-135

way Proving Ground test site in Utah’s desert to collect extensive measurements of urban136
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pollutant dispersion (Biltoft 2001; Yee and Biltoft 2004). During the field campaign, a se-137

ries of trials were carried out by releasing a passive tracer, propylene, at different locations138

within an urban-like canopy consisting of 120 regularly-spaced shipping containers. It is139

a canonical experiment for dispersion model validation: i) it was selected as one of the140

reference case studies for the COST Action 732 CFD dispersion model intercomparison141

(Franke et al. 2007), and ii) it has been used in a large number of CFD studies involving142

RANS (Hanna et al. 2004; Hsieh et al. 2007; Milliez and Carissimo 2007; Donnelly et al.143

2009; Efthimiou et al. 2011; Kumar et al. 2015; Bahlali et al. 2019) or LES (Camelli et al.144

2005; Antonioni et al. 2012; König 2014; Nagel et al. 2022). In this study, we focus on145

the trial 2681829 corresponding to neutral atmospheric conditions.146

2.2 LES model of the MUST field experiment147

We use the AVBP1 (Schönfeld and Rudgyard 1999; Gicquel et al. 2011) code to148

build the LES model. AVBP solves the LES-filtered Navier-Stokes equations on un-149

structured mesh using a second-order Lax-Wendroff finite-volume centered numerical150

scheme (Schönfeld and Rudgyard 1999) and using pressure gradient scaling since the151

atmospheric flow features a low Mach number (Ramshaw et al. 1986). Tracer disper-152

sion is modeled by the LES-filtered advection-diffusion equation using an Eulerian ap-153

proach. Subgrid-scale turbulence is modeled using the Wall-Adaptative Local Eddy-154

Viscosity (WALE) model (Nicoud and Ducros 1999) for subgrid momentum transport, and155

a gradient-diffusion hypothesis for subgrid tracer transport (with the turbulent Schmidt156

number equal to Stc = 0.6).157

The computational domain is a rectangular box with dimensions of 420m by 420m by158

50m, discretized with a boundary-fitted mesh of 91 million tetrahedra, with a resolution159

ranging from 0.3m in the canopy to 5m at the top of the domain.160

In terms of boundary conditions, a logarithmic wind profile is imposed at the inlet so161

1AVBP documentation, see https://www.cerfacs.fr/avbp7x/
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that the mean inlet wind velocity vector u reads162

u =


uinlet cos(αinlet)

uinlet sin(αinlet)

0

 , with uinlet(z) =
u∗
κ

ln

(
z + z0
z0

)
, (1)

where κ is the von Kármán constant equal to 0.4, z0 is the aerodynamic roughness length,163

and u∗ is the friction velocity. In addition, a synthetic turbulence injection method164

(Kraichnan 1970; Smirnov et al. 2001) is used to impose the upstream wind fluctua-165

tions based on a precomputed Reynolds tensor from a precursor run (corresponding to166

a simulation with the same surface roughness but without obstacles, and with periodic167

boundary conditions at the inlet and outlet inspired by Vasaturo et al. (2018)). At the168

lateral boundaries, symmetry boundary conditions are used. Static pressure is imposed169

at the outlet and top boundaries. Standard laws of the wall are imposed for the ground170

and obstacle boundaries. The pollutant source is modeled by a local source term in the171

advection-diffusion equation to match the experimental volumetric flow rate. A more172

detailed description of the boundary conditions is given in Lumet et al. (2024b).173

To be comparable to the MUST observational time series, we need to simulate a 200-174

s time sequence for each snapshot of the learning dataset. Before running this time175

sequence, we need to initialize each simulation until first- and second-order statistics of176

the flow and tracer variables reach a stationary state. For this initialization, a spin-up177

time tspin−up of 1.5 times the convective time scale is used:178

tspin−up = 1.5×
(

L

Ubulk

)
= 1.5× κH L

u∗

[
(H + z0) ln

(
H+z0
z0

)
−H

] , (2)

with L = 420m the domain length and H = 50m the domain height. This spin-up179

time is specific to each snapshot as the bulk velocity Ubulk is an uncertain quantity180

(Sect. 2.3). Note that the average computational cost for a given simulation of 200 s181

is around 15,000 core hours, which motivates the development of a surrogate model to182

speed up predictions.183
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2.3 Definition of the input parameter space184

2.3.1 Choice of input parameters185

In this work, we focus on atmospheric parametric uncertainties. For the surrogate186

model to be useful, it must capture the dependence of the tracer dispersion on the most187

influential and uncertain atmospheric parameters of the LES model. In preliminary work188

(Lumet (2024), Chapter III), we carried out one-at-a-time sensitivity analysis and showed189

that the inlet wind direction αinlet and the friction velocity u∗ are the two parameters190

that most significantly affect the LES mean concentration predictions. In particular, the191

aerodynamic roughness length z0 is well identified in the MUST experiment (z0 is equal192

to 0.045 ± 0.005m according to observations, Yee and Biltoft (2004)) and was found to193

have a negligible impact. For these reasons, we consider only two uncertain parameters:194

θ = (αinlet, u∗) , (3)

to define the input space of the surrogate model. Note that this choice is quite common195

in urban flow surrogate modeling (Margheri and Sagaut 2016; Garćıa-Sánchez et al. 2014,196

2017). Note also that, under neutral conditions, the mean concentration is inversely197

proportional to the friction velocity and the reduction problem could thus be simplified198

by predicting dimensionless quantities, as done by Sousa et al. (2018) and Lamberti and199

Gorlé (2021). This normalization was investigated in Lumet (2024), Chapter IV, but we200

choose to present results with multiple input dimensions here for generalization purposes.201

2.3.2 Parameter variation ranges202

The surrogate model must cover a wide, but plausible and feasible, range of variation203

in the input parameters (Eq. 3). Based on a microclimatology constructed using all204

available data from the closest micrometeorological station to the MUST site (Lumet205

(2024), Chapter IV), all wind directions are likely to occur and more than 99% of the206

horizontal wind speed measurements at z = 10m are below 12m s−1, which corresponds207

to a friction velocity u∗ of 0.89m s−1 and which is therefore chosen as the maximum friction208
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velocity here. We limit the minimum friction velocity to 0.07m s−1, which corresponds209

to a wind speed of about 1m s−1 at an altitude of 10m, since we are interested in windy210

conditions. To reduce the number of LES, we also restrict the range of variation for the211

inlet wind direction to wind directions for which the plume crosses the array of containers.212

In the end, the input parameter space reads213

Ωθ = [−90 ◦, 30 ◦]× [0.07m s−1, 0.89m s−1]. (4)

2.3.3 Parameter space sampling214

To sample the input parameter space (Eq. 4), we use Halton’s sequence (1964). As215

a low-discrepancy sequence, it samples the space uniformly and more efficiently than a216

purely random sequence for a limited number of samples, avoiding redundant sampling217

in the same areas and it is well adapted to a small number of parameters. Figure 1 shows218

the location of the 200 samples thus obtained in the uncertain parameter space.219

−90 −60 −30 0 30
αinlet (◦)

0.2

0.4

0.6

0.8

u
∗

(m
s−

1
)

Train sample

Test sample

Analysis test sample

Figure 1: Input parameter space sampling obtained with Halton’s sequence. Each point is a
pair of parameters for which we perform an LES prediction. The training (80%) and test (20%)
sets are represented as blue squares and green circles, respectively. The horizontal red shaded area
corresponds to the parameter space sub-section scanned by taking a margin of ±5% around the
constant friction speed uplot

∗ = 0.45ms−1. The vertical shaded area is similarly defined around the
constant inlet wind direction αplot

inlet = −43° with a margin of ±2°. The test samples within these
ranges (red triangles) are used in Sect. 4.3 to evaluate the surrogate model.
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2.4 Generation of the LES dataset220

We run an LES for each of the 200 input parameter samples (Fig. 1) to provide the221

learning dataset for the surrogate model. The main quantity of interest for the surrogate222

modeling approach is the 3-D mean (time-averaged) concentration field averaged over the223

200-s analysis time period of the MUST experiment.224

To generate this ensemble, the computational domain is rotated to align with the mean225

wind direction αinlet to avoid inducing lateral confinement and numerical instabilities due226

to the shear-free boundary conditions at the domain sides. The spin-up time before227

collecting LES statistics is scaled by the friction velocity according to Eq. 2 to account228

for the slowing down of the flow establishment with decreasing u∗. Finally, the Reynolds229

stress tensor prescribed for the turbulent injection method is rescaled by u2∗ following230

similarity theory.231

The total cost of generating this LES ensemble is about 5.7 million core hours. Note232

that a subset of the most relevant data from these simulations, including all the data used233

in this study, is available in open access (Lumet et al. 2024a).234

Figure 2a shows the topology of the LES ensemble with the example of the mean235

concentration c at one specific location within the canopy (the green square in Fig. 2b,236

c corresponding to the tower B in the MUST experiment). The mean concentration237

increases linearly with decreasing friction velocity. The dependence on the wind direction238

is more complex with a concentration maximum obtained for αinlet ≈ 30 ° and a rapid239

decay in both directions down to 0 ppm as the plume no longer crosses the probe location.240

The two examples of horizontal cuts of the LES mean concentration fields (Fig. 2b, c)241

obtained for two different wind conditions highlight the high spatial variability of the fields,242

especially within the plumes, which is a challenge for the surrogate modeling problem.243

2.5 Noise in the learning dataset244

Atmospheric flows are naturally unsteady with strong variations occurring over a wide245

range of frequencies corresponding to the time scales of the atmospheric eddies. When246

considering statistics over finite temporal periods, this internal variability yields sampling247
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Figure 2: (a) LES prediction of the local mean (time-averaged) concentration c at tower B at
z = 2m for each sample of parameters θ = (αinlet, u∗) from Fig. 1. (b, c) Horizontal cuts of the

mean concentration at z = 1.6m for the two samples
(
α
(81)
inlet, u

(81)
∗

)
=
(
−27.7 °, 0.08ms−1

)
and(

α
(133)
inlet , u

(133)
∗

)
=
(
7.73 °, 0.60ms−1

)
in (a). The green square corresponds to the tower B, and

the red star corresponds to the tracer source.

errors and is therefore a source of aleatory uncertainty, which is inherent to the physical248

system under study and thereby irreducible. For the MUST case, internal variability has a249

significant impact on the tracer concentration statistics when computed over the standard250

200-s analysis period (Schatzmann et al. 2010; Lumet et al. 2024b). One of the challenges251

of this study is to build a surrogate model that explicitly estimates this uncertainty when252

emulating the mean concentration fields.253

To quantify the effect of internal variability on the LES predictions, we use the sta-254

tionary bootstrap approach from Lumet et al. (2024b), which relies on resampling of the255

sub-averages of the physical fields using the algorithm of Politis and Romano (1994) and256

which involves a mean bootstrap block length to account for temporal correlation between257

sub-averages. This approach is applied separately for each snapshot in the dataset (Fig. 1)258

using 1,000 bootstrap replicates to estimate the internal variability.259

Figure 3 confirms that the internal microscale variability of the ABL significantly260

11



−75 −50 −25 0 25
αinlet (◦)

0.2

0.4

0.6

0.8

u
∗

(m
s−

1
)

0

5

10

15

20

25

〈σ
b

o
ot

st
ra

p
(c

)/
c〉

(%
)

Figure 3: Relative uncertainty of the mean concentration in the parameter space estimated using
stationary bootstrap (Lumet et al. 2024b) and averaged over the whole spatial domain. Each circle
corresponds to the averaged uncertainty of one LES sample of the learning dataset obtained from
Halton’s sequence (Fig. 1).

affects the LES learning dataset, with spatially-averaged relative standard deviations261

of up to just over 20% for a few samples of the LES dataset. Looking at the mean262

concentration fields, these deviations can be even larger locally, especially in areas of263

strong gradients or close to the source. We note in Fig. 3 that the noise induced by264

internal variability is not homogeneous in the input parameter space, as it increases as265

the friction velocity decreases. This is because as advection decreases, the temporal266

correlation of concentration increases, which increases the uncertainty of the mean over267

the 200-s analysis period (less independent information to estimate the mean). We also268

note that the noise decreases as αinlet moves away from the median value of −30 °, due269

to a zoning bias: the plume moves further outside the domain at the boundary angles270

(Eq. 4), and there is therefore a larger proportion of the domain where the concentration271

is zero at these angles.272

This quantification of the noise in the learning dataset is of paramount importance for273

the construction and validation of surrogate models. In particular, this information can274

be used to select the dimension of the latent space to prevent the surrogate model from275

overfitting the noise associated with internal variability (Sect. 3.4). Internal variability276

estimates can also be used as a reference to check that the surrogate model uncertainty277

is not underestimated (Sect. 3.3), and as a performance target for the surrogate model278
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(Sect. 3.5).279

3 Surrogate modeling approach280

This section presents the POD–GPR surrogate modeling approach and specifies the281

inputs/outputs and metrics used for validation. The focus is on two points. The first point282

is how to estimate the uncertainty associated with POD–GPR predictions and relate it283

to internal variability. The second point is how to make an informed choice about the284

surrogate latent space dimension.285

3.1 Problem statement286

The goal of the surrogate model is to emulate as closely as possible the response surface287

of the LES model (Sect. 2.2) with respect to the input parameters θ = (αinlet, u∗) defined288

over the space Ωθ (Eq. 4, Sect. 2.3). This means finding a function:289

Msurrogate : Ωθ −→ RN , (5)

θ 7−→ ysurrogate,

that minimizes

∫
Ωθ

∥ysurrogate(θ)− yLES(θ)∥dθ, where yLES ∈ RN is the field to be290

emulated, discretized on a grid ofN nodes, and where ysurrogate is its counterpart predicted291

by the surrogate. This function is obtained here by learning from the train dataset292 {(
θ(i), yLES(θ

(i))
)}Ntrain

i=1
with Ntrain = 160 (80% of the full LES dataset, see Fig. 1).293

In this study, we focus on the emulation of the mean tracer concentration fields, which294

are noisy due to the internal variability of the ABL (Sect. 2.5). Taking into account this295

aleatory uncertainty in the construction and validation of the surrogate model is a key296

challenge we address here.297

To reduce the computational cost associated with the high dimension N of the solver298

grid on which the fields of interest are expressed, we interpolate all the fields on an analysis299

mesh twice as coarse, centered around the container array, and with a height limited to300

20m as most of the tracer is located in this area. This leads to an analysis mesh of301
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N = 1.88 × 106 nodes, with characteristic cell sizes ranging from 0.6m to 4m, which302

facilitates efficient model reduction. We have checked that using a coarser-resolution303

mesh has a negligible effect on the surrogate model accuracy (not shown here).304

3.2 The POD–GPR surrogate model305

3.2.1 Principle306

We choose to use a POD–GPR surrogate model because it has proven to be efficient,307

relatively inexpensive and robust (Marrel et al. 2015; Guo and Hesthaven 2018; Nony308

et al. 2023). The fundamental principle of the POD–GPR approach is to combine:309

i) a reduction step using Proper Orthogonal Decomposition (POD) (Sirovich 1987;310

Berkooz et al. 1993), which is very popular in fluid mechanics (Chinesta et al.311

2011; Taira et al. 2017; Vinuesa and Brunton 2022) and consists in finding a low-312

dimensional space, called latent space, of dimension L ≪ N , on which the fields to313

be emulated y(θ) are projected;314

ii) and a regression step using standard Gaussian Process Regression (GPR) (Ras-315

mussen et al. 2006), which consists in learning from the train set, the relationship316

between the LES model input parameters θ and the latent coefficients
{
kℓ(θ)

}L
ℓ=1

317

resulting from the field projection onto the latent space.318

This reduction-regression approach allows i) to reduce the dimension of the regression319

problem to L latent variables (L ≪ N) and thereby drastically reduce the computational320

burden of the learning task; and ii) to separate the parametric dependence of the field321

from the spatial variability.322

The POD–GPR model is implemented as a standard statistical learning approach,323

i.e. with an initial training phase consisting of i) preprocessing the LES fields, ii) building324

the POD reduced basis based on the train set, and iii) optimizing the GPR models in325

the latent space (Fig. 4a). This training phase is done offline and only once. The trained326

POD–GPR can then provide online field predictions for new inputs θ as follows: i) the327

associated POD reduced coefficients are predicted by the fitted GPR models, and ii) the328
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Figure 4: Schematic of the POD–GPR surrogate model. Its operation is divided into two stages:
the training phase (a), and the prediction phase (b). For the training phase, first, a preprocessing T
is applied to the LES predicted fields, and the POD reduced basis (ψ1, ...,ψL) is built on the scaled
train set; then L independent GPR models are optimized to emulate the L POD reduced coefficients
(k1, ..., kL) for the input parameters θ. For the prediction phase, the fitted GPR models predict the
POD reduced coefficients associated with a given set of wind conditions θ, then the inverse POD
projection and inverse scaling T −1 are applied to recover the associated physical field.

inverse POD projection and inverse fields scaling are applied to these coefficients to re-329

cover the physical field ysurrogate (Fig. 4b). The following sections present the theoretical330

elements of the POD and GPR techniques required for this study.331

3.2.2 Field preprocessing and dimension reduction using POD332

With POD, the fields are projected linearly into the latent space generated by the333

L eigenvectors
{
ψℓ
}L
ℓ=1

of the train set covariance matrix associated with the L largest334

eigenvalues
{
Λℓ
}L
ℓ=1

. These eigenvalues are the most informative about the coherent335

spatial structures emerging from variations in the wind conditions θ = (αinlet, u∗). The336

question of how to choose L is discussed further in Sect. 3.4.337
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The projection of one field T (y) onto the POD latent space can be formulated as338

T (y) ≈
L∑
ℓ=1

√
Λℓkℓψℓ, (6)

where T is a field preprocessing treatment including centering, and
{
kℓ
}L
ℓ=1

are the POD339

reduced coefficients defined as the coefficients in the projection of the given field y(θ)340

normalized by
√
Λℓ. This scaling, called POD whitening (Kessy et al. 2018), ensures that341

the set of reduced coefficients
{
kℓ
}L
ℓ=1

is centered and has unit component-wise variances342

on average, so that the regression problem is well posed for GPR.343

The orthogonality of POD modes leads to some very useful properties (Berkooz et al.344

1993; Cordier and Bergmann 2006): i) the POD decomposition (Eq. 6) is the linear345

combination that reproduces the most variance of the original set, and ii) POD reduced346

coefficients are uncorrelated, i.e. Cov(ki, kj) = 0, if i ̸= j, which justifies why we build347

one GPR model per mode (Fig. 4).348

For pollutant dispersion applications, a particular difficulty arises from the wide dis-349

parity of the concentration scale, which significantly limits POD approximation accuracy.350

This can be addressed by preprocessing the fields before building the POD, as this changes351

the meaning of the optimality and orthogonality properties of the POD modes (Schmidt352

and Colonius 2020), and thus conditions the POD ability to efficiently represent fields353

in a smaller dimension. Using a logarithmic preprocessing, which is a natural choice for354

concentrations that decrease exponentially with distance from the source, results in better355

overall projection performance for the MUST case study (not shown here – see Lumet356

(2024), Chapter IV, for further discussion on preprocessing strategies). This logarithmic357

preprocessing reads:358

T : RN −→ RN , (7)

y(xk) 7−→
√

ω(xk)

Ω
[ln(y(xk) + yt)− ⟨ln(yLES(xk) + yt)⟩] , 1 ≤ k ≤ N,

where
ω(xk)

Ω
is the relative volume of the node xk, and yt is a threshold set to 10−4 ppm359
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to avoid issues with concentration values close to zero. This choice provides an effective360

compromise that does not over-cut low concentrations and does not over-emphasize very361

low variances, which are mainly numerical noise. Note that this preprocessing also includes362

the centering required for POD (Berkooz et al. 1993), and volume node weighting to avoid363

over-weighting refined locations (Schmidt and Colonius 2020).364

3.2.3 Latent coefficients estimation by Gaussian processes365

Once the POD latent space is constructed, the next step is to predict the POD reduced366

coefficients
{
kℓ(θ)

}L
ℓ=1

for any new wind conditions θ ∈ Ωθ (Fig. 4b). Since POD coeffi-367

cients are uncorrelated, we simplify this vector regression problem into L scalar regression368

problems solved by GPR (Rasmussen et al. 2006). There are three main reasons for this369

choice: i) simple interpolation may fail to predict latent space components (Brunton and370

Kutz 2019); ii) GPR was found to be one of the best machine learning regression meth-371

ods for predicting POD-reduced coefficients of LES concentration fields (Nony 2023); and372

iii) GPR models predict probability distributions and not just pointwise estimates, which373

is in line with our objective to quantify surrogate model uncertainties.374

The principle of Gaussian processes (GP) is that the data distribution can be described375

by a Gaussian stochastic process, implying376

kℓ = fℓ(θ) + ϵℓ with


fℓ(θ) ∼ GP(0, rℓ(θ,θ

∗)), ∀(θ,θ∗) ∈ Ω2
θ

ϵℓ ∼ N (0, s2ℓ)

, (8)

where rℓ is the GP covariance function, or kernel, and where ϵℓ is an additive Gaussian377

noise with variance s2ℓ accounting for the fact that the kℓ are subject to an irreducible noise378

due to the internal variability of the mean concentration (Fig. 3). Note that we assume379

that the prior distribution of the GP is zero on average since POD reduced coefficients380

are centered on average.381

Given the property that any finite subset of realizations of a GP follows a multivariate382

Gaussian distribution, the posterior probability distribution of the quantity of interest383
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k∗ℓ(θ
∗) knowing the training set {θtrain,Ktrain

ℓ } is384

k∗ℓ(θ
∗)
∣∣∣
{θtrain,Ktrain

ℓ }
∼ N

(
µℓ, σ2

GP(k
∗
ℓ)
)
, (9)

with:385


µℓ = rℓ(θ

∗,θtrain)
[
rℓ(θ

train,θtrain) + s2ℓI
]−1

Ktrain
ℓ ,

σ2
GP(k

∗
ℓ) = rℓ(θ

∗,θ∗) + s2ℓ − rℓ(θ
∗,θtrain)

[
rℓ(θ

train,θtrain) + s2ℓI
]−1

rℓ(θ
train,θ∗).

(10a)

(10b)

In the regression context, these equations give the mean GPR prediction (Eq. 10a)386

and the associated variance (Eq. 10b), which quantifies two forms of uncertainty: i) the387

uncertainty linked to the noise in the training data and related to the term s2ℓI, and ii) the388

regression uncertainty that depends on the distance between the new input parameters389

θ∗ and the training parameters θtrain. Both equations involve the kernel rℓ, which is here390

of standard Matérn type with hyperparameter ν = 5/2 (Stein 1999).391

In the end, each GP has four hyperparameters: the noise variance s2ℓ, and three pa-392

rameters involved in the Matérn kernel (Stein 1999): the maximum allowable covariance,393

and the length scale associated with each of the two uncertain parameters. These param-394

eters are determined by maximum log-likelihood estimation (Hastie et al. 2009) during395

GP optimization (Fig. 4a).396

3.3 Uncertainty estimation of POD–GPR predictions397

Below we explain how the GPR estimated uncertainty (Eq. 10b) is propagated from398

latent space to physical space through the POD inverse projection. This is useful to399

quantify the uncertainty of POD–GPR field predictions.400

POD–GPR predictions are defined as linear combinations of the POD reduced coeffi-401

cients kℓ(θ) (Eq. 6), which are uncorrelated (by POD modeling assumption) and normally402

distributed (Eq. 9). Consequently, at each grid node xk, the variance of the POD–GPR403
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prediction T (y(θ,xk)) also follows a normal distribution:404

σ2
POD−GPR (T (y(θ,xk))) =

L∑
ℓ=1

Λℓ σ
2
GP(kℓ(θ))ψℓ(xk)

2, (11)

with σ2
GP(kℓ(θ)) the ℓth GP variance (Eq. 10b).405

Using log-preprocessing (Eq. 7), we deduce that the variance of the re-scaled mean406

concentration prediction y(θ,xk) follows a log-normal distribution:407

σ2
POD−GPR(y(θ,xk)) =

[
exp (s(θ,xk)

2)− 1
]
× exp

(
2m(θ,xk) + s(θ,xk)

2
)
, (12)

where:408 
m(θ,xk) =

√
Ω

ω(xk)

L∑
ℓ=1

√
Λℓ kℓψℓ(xk) + ⟨ ln(yLES + yt) ⟩,

s(θ,xk)
2 =

(
Ω

ω(xk)

) L∑
ℓ=1

Λℓ σ
2
GP(kℓ(θ))ψℓ(xk)

2.

(13a)

(13b)

Equation 12 provides an estimate of the uncertainty associated with POD–GPR predic-409

tions. This uncertainty is the sum of the GP variances σ2
GP(kℓ(θ)), which quantify the410

noise error in the training data and the regression error for each mode. In this context,411

these two forms of error therefore correspond to the uncertainty associated with the LES412

internal variability (Sect. 2.5) and to part of the structural error associated with model413

reduction. It is worth noting that this estimate does not include the error associated with414

the projection into the POD latent space.415

3.4 A priori choice of latent space dimension416

The choice of the POD latent space dimension is case-dependent and has a critical417

effect on the accuracy of the surrogate model. On the one hand, the higher the number of418

POD modes, the more variance of the original ensemble is captured in the POD reduced419

basis. On the other hand, high-order modes are likely to encode noise in the train set420

(Forkman et al. 2019), and are therefore best set aside to prevent GP from overfitting421

noise during learning. In this section, we present an innovative method to select L as a422
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trade-off between the total variance embedded in the POD reduced basis and the amount423

of noise carried by the POD modes.424

POD projection error First, we evaluate the POD projection error, i.e. the error ob-425

tained after reconstructing the fields projected onto the POD latent space through inverse426

POD transformation, for varying number of modes L following the approach adopted by427

Nony et al. (2023). Figure 5a shows that the POD projection normalized mean square428

error (NMSE) quickly decreases with the number of modes, and that a small number of429

modes (L ≈ 5−10) allows to obtain very fine NMSE scores. We verify that the eigenvalues430

Λℓ are a good proxy for quantifying the amount of information retrieved by each POD431

mode (Berkooz et al. 1993) and can therefore be used to select L as done by Xiao et al.432

(2019).
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Figure 5: (a) POD projection error evaluated over the train set with NMSE (Eq. 15) as function
of the number of modes retained, and POD eigenvalues Λℓ associated with each mode ℓ. (b) Spread
of the difference between POD reduced coefficients kℓ replicates and their mean E(kℓ). The spread
is defined by the 2.5th and 97.5th percentiles and is averaged over the train set. (c) Ratio between
the averaged variance of the reduced coefficient bootstrap replicates σ2

bootstrap(kℓ) and the POD
eigenvalue Λℓ associated with each mode ℓ. The red dotted line indicates the number of modes
selected for this study.
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Internal variability in the POD latent space To quantify how the noise caused by434

internal variability is captured by each POD mode, we project the bootstrap replicates of435

the LES fields onto the POD latent space constructed with the original fields (Sect. 2.5).436

We thereby obtain 1, 000 realizations of the POD reduced coefficients kℓ associated with437

each field in the dataset. Figure 5b shows that the spread of the reduced coefficient438

replicates increases significantly when going to higher order modes (i.e. for increasing ℓ).439

In particular, for ℓ ≤ 5, the spread of the bootstrap replicates of the reduced coefficients440

remain small (< 10%), implying that these modes correspond to systematic patterns441

associated with the plume structure and its dependence on the wind conditions. The442

variability of the POD reduced coefficients then increases rapidly before reaching a plateau443

from ℓ ≥ 15. At this plateau, the spread of the kℓ replicates varies by about ±25%. This444

implies that field features linked to internal variability are mainly captured by higher445

order modes, which is consistent with the literature (Forkman et al. 2019). This in turn446

implies that we need to limit the number of modes L to avoid introducing noise into the447

POD-GPR surrogate model.448

A priori criterion to choose the POD latent space dimension Based on these449

findings, we propose to measure the ratio between the internal variability noise and the450

fraction of the total ensemble variance represented by each mode defined as451

σ2
bootstrap(kℓ)

Λℓ
, (14)

where σ2
bootstrap(kℓ) is the variance of the POD reduced coefficients replicates averaged452

over the train set, and where Λℓ is the ℓth eigenvalue in the POD decomposition.453

The ratio in Eq. 14 is shown in Fig. 5c and provides a way to choose the latent space454

dimension L that minimizes both the noise and the POD projection error, and it has the455

advantage of being completely a priori as it does not require either the test set or the456

evaluation of the full POD–GPR model. Results show that this ratio is close to zero for457

the first six modes and then increases sharply with mode order. We therefore choose to458

truncate the POD decomposition before the inflection point using L = 10 modes to project459
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the mean concentration fields. This approach for selecting the latent space dimension is460

evaluated a posteriori in Sect 4.3.461

3.5 Surrogate validation methodology462

We present now the metrics used to quantify the surrogate model reduction error,463

before estimating the best values achievable for each metric given the internal variability.464

3.5.1 Quantification of the surrogate error465

The POD–GPR model accuracy is estimated on a set of independent test samples466

(Ntest = 40, corresponding to 20% of the full LES dataset, see Fig. 1). This is essential467

to assess the ability of the model to generalize information from the train set to new468

meteorological forcing parameters (αinlet, u∗).469

To assess the surrogate error, we use standard air quality metrics from Chang and470

Hanna (2004). These metrics compare the mean concentration field predicted by the471

surrogate model csurrogate with the LES counterpart cLES in terms of normalized mean472

square error (NMSE), fraction of predictions within a factor of two of observations (FAC2),473

geometric variance (VG), and figure of merit in space (FMS):474

NMSE =
⟨ (cLES − csurrogate)

2 ⟩
⟨ cLES ⟩ ⟨ csurrogate ⟩

, (15)

475

FAC2 = ⟨ ξ ⟩ with ξ(xk) =


1 if 0.5 ≤ csurrogate(xk) / cLES(xk) ≤ 2,

1 if csurrogate(xk) ≤ ct and cLES(xk) ≤ ct,

0 else,

(16)

476

VG = exp
(
⟨ (ln c̃LES − ln c̃surrogate)

2 ⟩
)
, (17)

477

FMS(cℓ) =
Ω∩(cℓ)

Ω∪(cℓ)
, (18)

where ⟨·⟩ denotes spatial averaging weighted by the dual volume of the node xk, ct is478

a concentration threshold defining c̃ = max(c, ct), as suggested by Chang and Hanna479
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(2004) and Schatzmann et al. (2010) to avoid issues with values close to zero in FAC2480

and VG metrics. In this study, we use ct = 10−4 ppm, considering that errors on lower481

concentrations are mainly due to numerical noise. Finally, Ω∩(cℓ) denotes the volume, in482

m3, of the domain in which both csurrogate and cLES are over a user-specified tracer value483

cℓ. Conversely, Ω∪(cℓ) denotes the volume where csurrogate ≥ cℓ or cLES ≥ cℓ.484

The use of different metrics than the loss used during training is important because485

of the multi-order nature of the concentration field. NMSE is more sensitive to errors at486

high concentrations, while VG assesses prediction accuracy at low concentrations. FMS487

quantifies how close the two plume shapes are relative to a given concentration level. The488

scores that a perfect model would obtain are reported in Table 1.489

3.5.2 Estimation of the internal variability490

LES data are noisy due to internal variability (Sect 2.5). It would therefore be pointless491

to try to build a surrogate model whose accuracy exceeds this uncertainty. To quantify492

the error due to internal variability alone, we use the bootstrap approach proposed in493

Lumet et al. (2024b) to generate two independent sets of bootstrap replicates of the same494

LES field. We then compute the average difference between each pair of replicates using495

the metrics introduced in Sect. 3.5.1. For each metric, we obtain the amount of error due496

to internal variability only, which is the expected error when comparing two independent497

realizations of the mean concentration fields for the same input parameters.498

This is done for every LES sample in the dataset, and the ensemble-averaged internal499

variability errors give an upper bound estimate of the best overall accuracy achievable for500

each metric when validating the POD–GPR surrogate model.501

4 Surrogate model validation502

In this section, we present a thorough evaluation of the POD–GPR surrogate model.503

We first assess its accuracy over the test set and its efficiency (Sect. 4.1). We then validate504

the innovative aspects of our approach: the POD–GPR uncertainty estimation (Sect. 4.2),505

and the selection of the number of POD modes (Sect. 4.3). Finally, we study how the506
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POD–GPR model behaves when reducing the train set (Sect. 4.4). All results are given507

for the mean concentration field, but the POD–GPR approach can be applied to any LES508

field (Lumet (2024), Appendix B).509

4.1 Evaluation of the surrogate model field predictions510

We evaluate here the POD–GPR predictions of mean concentration following the511

methodology introduced in Sect. 3.5, using the mean internal variability error as the512

reference for validation. We use a latent space dimension of L = 10 in accordance with513

the informed choice made in Sect. 3.4.514

Prediction accuracy The overall performance of the surrogate model is quantified us-515

ing standard air quality metrics (Sect. 3.5.1). Table 1 shows the obtained scores averaged516

over the test set. Overall, the POD–GPR model yields very satisfactory results, with517

most scores close to the error due to internal variability only, which is the best achievable518

accuracy. However, the results for NMSE and FMS(1 ppm) remain relatively far from519

the internal variability error, indicating that POD–GPR is less good at predicting high520

concentration values.521

Table 1: Prediction accuracy of the POD–GPR surrogate model evaluated using the metrics de-
fined in Sect. 3.5.1 and averaged over the test set. The standard deviations of the scores over the
test set are also given, as well as the individual scores for test samples #81 and #187, which repre-
sent the lowest and highest FAC2 scores achieved by the POD–GPR, respectively. For comparison,
the perfect scores for the metrics, the mean error due to internal variability only (Sect. 3.5.2) and
the mean error due to standalone reduction dimension are given.

FAC2 NMSE VG
FMS FMS

(1 ppm) (0.01 ppm)

Perfect score 1 0 0 1 1

Internal variability 0.95 1.80 1.39 0.83 0.93

POD projection error 0.91 20.4 1.33 0.75 0.93

POD–GPR prediction error 0.91 20.6 1.39 0.75 0.92

Standard deviation 0.04 43.2 0.68 0.11 0.03

Test sample #81 0.74 23.4 5.25 0.79 0.85

Test sample #187 0.96 8.08 1.07 0.86 0.94

Table 1 also shows that the POD–GPR prediction errors are almost identical to the522
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standalone POD projection errors (i.e. errors obtained by simply reconstructing the test523

fields after projection onto the POD basis by inverse POD transformation). This implies524

that the accuracy of the POD–GPR model is mostly limited by the accuracy of the POD525

and not by the GPR. In addition, the poor prediction performance for high concentra-526

tions can be explained by the fact that the POD is not well adapted to the multiscale527

and nonlinear nature of the concentration fields. In particular, the use of a logarithmic528

preprocessing before the POD degrades the reconstruction of high concentrations in the529

vicinity of the emission source, but has the advantage of preserving the other metrics530

and in particular the shape of the plume compared to linear processing (Lumet (2024),531

Chapter IV).532

There is quite a large spread of POD–GPR errors across the test samples, especially533

for the quadratic metrics NMSE and VG, indicating the presence of test sample outliers.534

This variability over the input parameter space is mainly explained by the fact that as the535

friction velocity decreases, the internal variability increases (Fig. 3), which makes the mean536

concentration noisier and therefore more difficult to predict. In addition, FMS(1 ppm),537

and to a lesser extent FMS(0.01 ppm) and FAC2, are subject to a zoning effect as they538

depend on the size of the plume within the domain of interest (Eqs. 16, 18). For example,539

these scores are improved when the wind direction carries the plume outside the container540

array (i.e. for αinlet ≈ 30 °or αinlet ≈ −90 °).541

Field prediction examples For a more detailed assessment of the POD–GPR model542

accuracy, we also examine its predictions in the physical space. Figures 6a, b, c, and d543

compare 2-D cuts of the mean concentration at z = 1.6m predicted by LES and POD–544

GPR. Results are given for the test sample #187
(
α
(187)
inlet , u

(187)
∗

)
=
(
21.8 °, 0.59m s−1

)
for545

which POD–GPR obtains the best FAC2 score over the test set, and for the test sample546

#81
(
α
(81)
inlet, u

(81)
∗

)
=
(
−27.7 °, 0.08m s−1

)
associated with the worst FAC2 score. The547

global scores obtained for these two particular snapshots are summarized in Table 1.548

In both cases, the POD–GPR model reproduces well the main features of the LES549

concentration field, in particular the shape and orientation of the plume. The spatial550
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Figure 6: Horizontal cuts at z = 1.6m of two test mean concentration fields estimated by LES
(a, b) and POD–GPR (c, d), and the absolute difference between the two (e, f). The left column
corresponds to the test sample #187 for which POD–GPR achieves the best FAC2 (Eq. 16) score
over the test set, and the right column corresponds to the test sample #81 which is associated
with the worst FAC2 score. The LES and POD–GPR predictions of 0.01 ppm and 10 ppm iso
concentration levels are shown in (g, h).
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distribution of the different concentration levels is also well reproduced, which is confirmed551

by the near superposition of the 0.01 ppm and 10 ppm concentration contour lines between552

LES and POD–GPR (Fig. 6d, h).553

However, for the sample with the worst FAC2 (#81), the POD–GPR underestimates554

the spanwise spread of the plume and significantly overestimates the mean concentration555

near the emission source (Fig. 6g). This is consistent with the poor NMSE obtained556

(Table 1) and this is due to the poor reproduction of high concentrations by the POD557

with logarithmic preprocessing. For this sample (corresponding to a low friction velocity558

and therefore subject to substantial internal variability) the POD–GPR tends to smooth559

the irregularities observed at the edges of the plume, thus poorly predicting the local560

abrupt decrease in concentration.561

Efficiency In terms of computational cost, it takes approximately 30 s to train the562

POD–GPR model using a single core of an Intel Ice Lake CPU. This includes field pre-563

processing, POD basis decomposition and GPR optimization. This training cost is in-564

significant compared to the cost of building the training dataset (Sect. 2.4). Once trained,565

the model provides a prediction of the full 3-D concentration field in about 0.03 s. This ap-566

proach is therefore compatible with applications requiring a large ensemble of predictions567

and/or real-time predictions.568

4.2 Assessment of the surrogate model uncertainty estimation569

We evaluate here the ability of the POD–GPR model to provide realistic uncertainty570

estimates by comparing them to the actual surrogate error over the test set and to the571

internal variability present in the LES dataset.572

Uncertainty reliability Figure 7a shows the uncertainty reliability diagram comparing573

actual surrogate error (y-axis) and surrogate model uncertainty estimates (x-axis). The574

POD–GPR uncertainty is underestimated compared to the actual POD–GPR error for575

most domain nodes, especially for the lowest concentration values. Nevertheless, the576

estimated trend is consistent, i.e. the larger the actual error, the larger the prior estimate.577
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Furthermore, the overall level of precision is satisfactory as the estimated uncertainty is578

in the right order of magnitude (within the green dashed lines) for 98% of the domain579

nodes. This is confirmed by the response surface of the POD–GPR (Fig. 12a, b), as the580

predicted envelopes appear to cover the test samples well. We can therefore be confident581

in the uncertainty predicted by the POD–GPR surrogate model despite a tendency to582

underestimate.583
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Figure 7: Reliability diagrams in the physical space and in the latent space: (a) Root mean
square error (RMSE) of the POD–GPR concentration prediction over the test set versus the POD–
GPR estimated uncertainty at each node where the concentration is larger than the tolerance
ct = 10−4 ppm. Each hexagon is colored according to the number of node points in the hexagon.
(b) RMSE of the GP prediction of the POD reduced coefficients kℓ over the test set versus the
GP estimated uncertainty, each mode ℓ is represented by a numbered circle (the POD latent space
dimension is L = 10). The green solid lines correspond to the identity function, and the dashed
lines in (a) show the range of plus or minus one order of magnitude.

To further investigate the cause of this underestimation, the uncertainty reliability is584

examined directly in the latent space in Fig. 7b. We find that for the estimation of the585

reduced POD coefficients by the GPs, the uncertainty estimate is very close to the error586

made on average, except for the high-order modes 8 and 10. This increase in error for587

higher-order modes is consistent with the fact that they are more affected by internal588

variability (Fig. 5b). The following conclusions can be drawn: i) the variance of the GP589

posterior distribution (Eq. 10b) is realistic, and ii) the underestimation observed in the590

physical space in Fig. 7a comes from the inverse POD projection. This is consistent with591

the fact that the POD projection error is not taken into account when estimating the592

28



total POD–GPR uncertainty (Sect. 3.3), yet the total POD–GPR error is essentially due593

to the POD projection error as indicated in Table 1.594

Ability to estimate internal variability a posteriori We now examine the nature595

of the estimated uncertainty in more detail, and assess the proportion due to internal596

variability. The first point is to study how the noise of the LES fields projected onto597

the POD latent space is captured by GPR. Figure 8 shows that the values of the GP598

variance hyperparameters s2ℓ obtained by maximum likelihood estimation are very close599

to the maximum level of internal variability of the POD reduced coefficients over the train600

set estimated by bootstrap. This is a strong result because the bootstrap estimates of the601

internal variability are not used to train the GPs.602
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Maximal internal variability of POD coefficients

Average internal variability of POD coefficients

Figure 8: GP noise variance s2ℓ hyperparameter obtained by log-likelihood maximization for each

mode ℓ as blue bars, and maximal (resp. average) noise on the POD reduced coefficients over the
train set as orange (resp. green) bars.

The fact that the GP noise variance parameter matches the maximum level of inter-603

nal variability (Fig. 8) implies that GPs overestimate the variance of the POD reduced604

coefficients for most samples where the internal variability is low. This is a structural605

limitation due to the fact that the GP additive noise does not depend on the input pa-606

rameter space (Eq. 8), while the variance due to internal variability does (Fig. 3). As607

a result, in the physical space, the POD–GPR uncertainty predictions tend to be un-608
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derestimated compared to the actual internal variability for samples where the internal609

variability is high, while they are overestimated for samples with low internal variability.610

This could be partially overcome in the future by implementing input-dependent noise611

variance hyperparameters, as suggested by Miyagusuku et al. (2015).612
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Figure 9: Internal variability of the mean concentration estimated by bootstrap and averaged over
the train set versus the POD–GPR estimated uncertainty at each node where the concentration is
larger than the tolerance ct = 10−4 ppm. Each hexagon is colored according to the number of node
points in the hexagon. The green solid lines correspond to the identity function and the dashed
lines show the range of plus or minus one order of magnitude.

Figure 9 shows that the uncertainty estimated by the POD–GPR is overall consistent613

with the LES internal variability over the train set, as the level of variability is in the right614

order of magnitude for 99% of the domain nodes. For most of the domain, the POD–GPR615

tends to overestimate the internal variability (hexagonal cells of high density beyond the616

green line), which is consistent with the GP noise matching the maximum level of internal617

variability in the latent space (Fig. 8). Note that this analysis is performed over the train618

set since for theses samples the GPR regression covariance is zero, and thus the POD–619

GPR uncertainty estimate only corresponds to the estimated internal variability. Finally,620

we note that the estimated uncertainty envelopes are consistent with the LES internal621

variability when looking at the POD–GPR response surfaces (Fig. 12a, b).622

In this internal variability analysis, the second point is to evaluate the spatial con-623

sistency of the POD–GPR uncertainty estimates with respect to the spatial distribu-624
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Figure 10: Horizontal cuts at z = 1.6m of the standard deviation of the mean concentration
induced by internal variability estimated using bootstrap (a, b), predicted by POD–GPR (c, d),
and the relative difference between the two (e, f). The left column corresponds to the train sample
#016 and the right column corresponds to the train sample #180

tion of internal variability to verify that the uncertainty is properly propagated from625

the POD latent space to the physical space (Sect. 3.3). We find that the variance626

predicted by the POD–GPR is consistent with the internal variability of the LES in627

terms of magnitude and structure, as shown in Fig. 10 for the train sample #016628

31



(
α
(016)
inlet , u

(016)
∗

)
=
(
−79.5 °, 0.14m s−1

)
for which the POD–GPR uncertainty estimate629

is the closest to the internal variability estimated by bootstrap and for the train sample630

#180
(
α
(180)
inlet , u

(180)
∗

)
=
(
−58.1 °, 0.56m s−1

)
, where POD–GPR overestimates the internal631

variability the most. Despite the overall agreement, the POD–GPR variability estimates632

appear to be overestimated within the plume and significantly underestimated near the633

plume edges (Fig. 10e, f), which is consistent with the overall tendency to underestimate634

low internal variability levels (Fig. 9). This is explained by the fact that there are high635

concentration gradients near the plume edges and thus high internal variability levels,636

a feature not well represented by the POD projection, which is based solely on mean637

concentration and not on its variability.638

In summary, the POD–GPR uncertainty estimates derived in Sect. 3.3 i) represent, in a639

spatially coherent manner, the inherent internal variability of the mean concentration field640

thanks to the ability of the GPs to accurately infer the level of noise in the train set, and641

ii) properly explain the actual surrogate errors at predicting the mean concentration. This642

particularly reinforces the robustness of the POD–GPR and its relevance to uncertainty643

quantification applications.644

4.3 A posteriori validation of the latent space dimension645

We revisit our choice of the number of POD modes (L = 10) obtained by following646

the a priori statistical approach we propose in Sect. 3.4. For this purpose, we evaluate647

the effect of the number of modes L on the performance of the full POD–GPR model on648

the test set (i.e. by varying L from 5 to 50 in the construction of the POD–GPR model).649

Validation metrics Figure 11 shows how the metrics defined in Sect. 3.5.1 change650

when modifying the POD latent space dimension L. The POD–GPR prediction accuracy651

over the test set increases with the number of modes and reaches a plateau for a larger652

number of modes (L ≈ 15–25) than the NMSE on the train set used in our mode choice653

approach (Fig. 5). This may indicate that integrating a larger number of modes into the654

POD–GPR model could lead to improved surrogate model accuracy.655
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Figure 11: POD–GPR prediction error as a function of the number of the modes L and evaluated
with FAC2 (a), NMSE (b), VG (c) averaged over the test set. Green lines correspond to perfect
scores; and red dashed lines correspond to the mean level of error due to internal variability only.
Error levels corresponding to the selected number of modes (L = 10) are shown as black dotted
lines.

Response surfaces As an additional diagnostic, Fig. 12 shows that using a larger656

number of modes significantly deteriorates the POD–GPR response surfaces, making them657

very noisy and implausible as, with L = 50 modes (Fig. 12e, f), the POD–GPR model is no658

longer able to retrieve the inversely proportional dependence of concentration on friction659

velocity expected from theory and retrieved for the configuration with L = 10 modes660

(Fig. 12a, b). This degradation is due to the fact that high-order modes mostly account661

for noisy structures due to internal variability (Fig. 5b), and are therefore not informative662

on systematic structures related to the wind conditions. As a result, when including high-663

order modes, the GPs attempt to learn unphysical dependence on the input parameters,664

resulting in the shortwave noise observed in Fig. 12. Still, the increase in uncertainty with665

the response surface deterioration suggests that the POD–GPR uncertainty estimate is666

robust. However, the fact that the degradation of the POD–GPR response surface is not667

seen by the global metrics, which continue to improve as the number of modes increases668

(Fig. 11), shows that one should not draw conclusions based on scalar metrics alone.669

In the light of these tests, our prior selection method for the latent space dimension is670

convincing. The resulting trade-off of L = 10 yields good validation scores, while avoiding671

the problem of response surface noise. However, we acknowledge that using a slightly672

larger number of modes (L ≈ 15–20) would also be appropriate and even slightly improve673
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Figure 12: POD–GPR prediction of the mean concentration at tower B at z = 2m (see tower
location in Fig. 2) as a function of the inlet wind direction αinlet (a, c, e), and of the friction
velocity u∗ (b, d, f). Shaded areas correspond to the 95% confidence intervals estimated by the
POD–GPR according to the procedure detailed in Sect. 3.3. Each row corresponds to the results
obtained with a different latent space dimension L ∈ {10, 25, 50}. When varying one parameter, the

other is set constant to either uplot
∗ = 0.45ms−1 (a, c, e), or αplot

inlet = −43 °(b, d, f), and the test
samples closest to the two segments of parameter space thus scanned (see Fig. 1) are represented
by horizontal red bars. The uncertainty on LES test samples induced by internal variability is
depicted as red vertical error bars.
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the surrogate model accuracy. Defining an optimal criterion for latent space dimension674

selection based on the noise/signal ratio defined in Eq. 14 is therefore an interesting675

prospect, but requires more validation cases.676

4.4 Robustness to training set reduction677

In order to assess the potential of the POD–GPR approach for future applications,678

we examine how the POD–GPR accuracy evolves as the size of the train set decreases679

(without changing the test set). This is particularly important to investigate the possi-680

ble trade-offs between the ability of the model to generalize from training data and the681

substantial cost of building the LES training dataset.682

The surrogate model is trained for decreasing train set sizes from Ntrain = 160 to683

Ntrain = 40 by keeping only the first samples in Halton’s sequence. To make the compar-684

ison fair, we systematically evaluate the averaged prediction errors over the same test set685

of Ntest = 40 samples. Results are shown in Fig. 13a, b, c and d in terms of FAC2, VG,686

FMS(1 ppm), FMS(0.01 ppm). The decrease in accuracy is fairly constrained and evolves687

linearly with the train set size, with a loss of 0.08 in FAC2 and 0.12 in VG for every 10688

training samples removed. More importantly, the accuracy decreases less rapidly than689

that of the nearest neighbor model (1–NN), which trivially predicts the mean concentra-690

tion field as equal to the closest train field in the parameter space (see Appendix). This691

is especially true for the low concentration values, as the VG score is significantly higher692

with the 1–NN model than with the POD–GPR model for small train set sizes (Fig. 13b).693

Regarding the NMSE metric (Fig. 13e), the evolution with Ntrain is quite chaotic for694

the POD–GPR and worse than for the 1–NN approach. As previously mentioned, this695

is related to the high POD projection error near the source when using the logarithmic696

transformation, and we can consider that the POD–GPR approach with the present pre-697

processing is not designed to make predictions near the source, regardless of the train set698

size.699

Figure 14 shows that the POD–GPR uncertainty predictions are very robust to train set700

size reduction. We find that, on average, the POD–GPR uncertainty predictions explain701
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Figure 13: Surrogate modeling errors for decreasing train set sizes. The mean concentration
prediction error is assessed using the metrics defined in Sect. 3.5.1: namely FAC2 (a), VG (b),
FMS (c, d), and NMSE (e). Results are given for the POD–GPR as blue circles and the 1–
NN model as orange squares. Perfect scores are represented as green lines; and red dashed lines
correspond to the mean level of error due to internal variability only.

overall well its actual error over the test set even with only 40 train samples (Fig. 14a,702

b, c). Similarly, the ability of the POD–GPR to represent the internal variability of the703

mean concentration is well preserved (Fig. 14d, e, f), although we note a tendency to704

underestimate it when the train set size is reduced, as there are fewer close neighboring705

points for the GPs to estimate the noise in this case.706

In summary, the ability of the POD–GPR model to generalize from a training dataset707

of limited size is better than for the 1–NN baseline approach, justifying the use of such708

a more sophisticated surrogate model. We find that for this problem, 40 LES training709

samples are sufficient to achieve good levels of accuracy for most metrics. Furthermore,710
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Figure 14: Reliability diagrams of the POD–GPR uncertainty estimates for varying train set size
Ntrain ∈ {40, 80, 120}. (a, b, c) Root mean square error (RMSE) of the POD–GPR concentration
prediction over the test set and (d, e, f) internal variability of the mean concentration estimated by
bootstrap and averaged over the train set, both versus the POD–GPR estimated uncertainty at each
node where the concentration is larger than the tolerance ct = 10−4 ppm. Each hexagon is colored
according to the number of node points in the hexagon. The green solid lines correspond to the
identity function and the dashed lines show the range of plus or minus one order of magnitude. The
FAC10 scores give the percentage of points between the two dashed lines (similarly as in Eq. 16).

the uncertainty estimates provided by POD–GPR remain consistent as the training set711

size decreases, despite a tendency to overestimate.712

5 Conclusion713

In this study, a data-driven surrogate dispersion model based on the two-stage POD–714

GPR approach was trained and rigorously evaluated using a large dataset of 200 LES715

simulations reproducing microscale dispersion scenarios of the field-scale MUST experi-716

ment for varying meteorological forcing. The resulting surrogate model is able to capture717

well the general plume shape within the canopy, approaching the best achievable accuracy718

given the internal variability in the LES data, while being very computationally efficient.719

The main novelty of this study is the in-depth analysis of the POD-GPR surrogate720
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model uncertainty and of the weight of internal variability, thus meeting the need ex-721

pressed by Dauxois et al. (2021); Tominaga et al. (2023) and Wu and Quan (2024).722

Future developments are required to account for the POD projection error in the POD–723

GPR uncertainty estimate to avoid error underestimation. But the present uncertainty724

estimates already explain the differences between the POD–GPR predictions and the LES725

references quite well, being in the right order of magnitude in 97% of cases. This work726

thus represents an important methodological step towards the representation of total un-727

certainty in microscale urban pollutant dispersion, as aleatory and modeling uncertainties728

have not been considered in most uncertainty quantification (Garćıa-Sánchez et al. 2014,729

2017) and data assimilation (Xiao et al. 2016; Mons et al. 2017; Sousa et al. 2018; Sousa730

and Gorlé 2019; Defforge et al. 2019, 2021) studies to date.731

A second important contribution of this study is the method for selecting a priori the732

POD latent space dimension, which is based on a trade-off between the accuracy of the733

POD reconstruction and the noise captured by the POD modes estimated by bootstrap734

as in Lumet et al. (2024b). The threshold used here to make this trade-off need to be735

consolidated and made more objective in future studies by considering a wide range of736

cases. For this study, the retained dimension (L = 10) is smaller than the dimension737

chosen based on the standalone reconstruction error (Xiao et al. 2019; Nony et al. 2023),738

but this choice is justified by the fact that using more modes (L > 25) significantly noises739

and degrades the POD–GPR response surface despite slightly better global metrics such740

as FAC2 and NMSE. This highlights that a surrogate model validation process learning741

from LES data, especially for the concentration variable, should not be based solely on742

global metrics but requires more local and structural analyses.743

In this study, the main shortcoming of the POD–GPR approach is its lack of accuracy744

in areas of high concentration, i.e. close to the source. This is mainly due to POD, as745

a linear transformation is not well suited to the wide disparity in concentration scales746

and introduces projection errors. A promising way to overcome this issue is the mixture-747

of-experts approach (El Garroussi et al. 2020), whose key idea is to train several POD–748

GPR models, each corresponding to a different preprocessing, to capture the different749
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concentration scales (Lumet (2024), Appendix B). Another promising perspective is the750

use of nonlinear dimension reduction techniques such as neural network autoencoders751

(Murata et al. 2020; Xiang et al. 2021; Masoumi-Verki et al. 2022; Nony 2023). However,752

a difficulty lies in the interpretation of the nonlinear latent space and in the identification753

of the internal variability noise.754

In the future, using deep learning for dimension reduction and/or learning the de-755

pendency on new parameters such as the source location will require significantly larger756

training datasets, which may not be feasible due to the computational cost of LES. Defin-757

ing the minimum amount of LES data required for training is therefore a key issue in758

LES emulator development. In this study, the POD–GPR surrogate model copes very759

well with a reduction of the train set down to 40 samples for two input parameters.760

The number of training samples may be further reduced by applying adaptive sampling761

methods to target learning zones (Picheny et al. 2010; Braconnier et al. 2011). Multifi-762

delity approaches (Lamberti and Gorlé 2021; Nony 2023) are also promising to to enrich a763

train set by including information from a lower fidelity, lower cost model, while retaining764

the more accurate information provided by LES, thus paving the way for the use of the765

uncertainty-aware POD–GPR surrogate model for more general and more complex urban766

pollutant dispersion studies.767
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Appendix: The nearest neigbor control surrogate model780

We use a Nearest Neighbor model (1–NN) as a simple baseline model against which we781

compare the POD–GPR accuracy. It is an appropriate control model because it represents782

the generalization error obtained by simply querying the available simulation dataset, and783

thus represents the minimum level of error that the POD–GPR must exceed to be worth784

using. The 1–NN is a classical k-Nearest Neighbor (k–NN) model (Hastie et al. 2009)785

with only one neighbor (k = 1). The 1–NN prediction is simply defined as the nearest786

LES field in the training dataset:787

ysurrogate(θ) = ytrain
LES (θ∗), with θ∗ = min

1≤i≤Ntrain

d(θtraini ,θ), (19)

where d is the Euclidean distance in a rescaled input space:788

d(θ(1),θ(2)) =

√√√√(α
(2)
inlet − α

(1)
inlet

αmax
inlet − αmin

inlet

)2

+ ζ2

(
u
(2)
∗ − u

(1)
∗

umax
∗ − umin

∗

)2

(20)

where αmin
inlet, α

max
inlet, u

min
∗ , and umax

∗ are the input space boundaries, and ζ is a rescaling789

factor that distorts the distances in the parameter space.790

The hyperparameter ζ gives more or less weight to the friction velocity when searching791

for the closest LES field in the dataset (Eq. 19). It is optimized during training by792

cross-validation (Hastie et al. 2009) with 8-fold resampling of the train set. The best793

compromise between RMSE, VG and FMS(1 ppm) scores is obtained for ζ = 0.275, which794

reduces the distances along the friction velocity axis and therefore gives more weight to795

the inlet wind direction parameter.796
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