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a b s t r a c t 

By 2050, two-thirds of the world’s population will live in ur- 

ban areas under climate change, exacerbating the environ- 

mental and public health risks associated with poor air qual- 

ity and urban heat island effects. Assessing these risks re- 

quires the development of microscale meteorological models 

that quickly and accurately predict wind velocity and pollu- 

tant concentration with high resolution, as the heterogene- 

ity of urban environments leads to complex wind patterns 

and strong pollutant concentration gradients. Computational 

Fluid Dynamics (CFD) has emerged as a powerful tool to ad- 

dress this challenge by providing obstacle-resolved flow and 

dispersion predictions. However, CFD models are very ex- 

pensive and require intensive computing resources, which 

can hinder their systematic use in practical engineering ap- 

plications. They are also subject to significant uncertainties, 

particularly those arising from the mesoscale meteorological 

forcing and the internal variability of the atmospheric bound- 

ary layer, some of which are aleatory and thereby irreducible. 

Given these issues, the construction of CFD datasets that ac- 

count for uncertainty would be an interesting avenue of re- 

search for microscale atmospheric science. 

In this context, we present the PPMLES (Perturbed-Parameter 

ensemble of MUST Large-Eddy Simulations) dataset, which 

consists of 200 large-eddy simulations (LES) characterizing 
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the complex interactions between the turbulent airflow, the 

tracer dispersion, and an idealized urban environment. These 

simulations reproduce the canonical MUST dispersion field 

campaign while perturbing the model’s mesoscale meteoro- 

logical forcing parameters. PPMLES includes time series at 

human height within the built environment to track wind ve- 

locity and pollutant release and dispersion over time. PPM- 

LES also includes complete 3-D fields of first- and second- 

order temporal statistics of the wind velocity and pollutant 

concentration, with a sub-metric resolution. The uncertainty 

of the fields induced by the internal variability of the at- 

mospheric boundary layer is also provided. The computation 

of PPMLES required significant resources, consuming 6 mil- 

lion CPU core hours, equivalent to the emission of approxi- 

mately 10 tCO2eq of greenhouse gases. This significant com- 

putational effort and associated carbon footprint motivates 

the sharing of the data generated. 

The added value of the PPMLES dataset is twofold. First, 

the perturbed-parameter ensemble of LES enables to quantify 

and understand the effects of the mesoscale meteorological 

forcing and the internal variability of the atmospheric bound- 

ary layer, which has been identified as a major challenge in 

predicting atmospheric flow and pollutant dispersion in ur- 

ban environments. Secondly, PPMLES reference data can be 

used to benchmark models of different levels of complexity, 

and to extract key information about the physical processes 

involved to inform more operational modeling approaches, 

for example through learning surrogate models. 

© 2025 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

S
pecifications Table 

Subject Atmospheric Science 

Specific subject area Large-eddy simulations of microscale wind flow and pollutant concentration in 

an idealized urban environment and for varying mesoscale meteorological 

forcing 

Type of data Dataset (HDF5), Table (CSV), 

Raw and processed simulation results. 

Data collection The data were obtained by running an ensemble of 200 large-eddy simulations 

reproducing the MUST field trial #2681829 thanks to the AVBP # solver. The 

simulations were run on four different supercomputers: CERFACS’ Nemo (Intel 

Haswell) and Kraken (Intel Skylake), Météo-France’s Belenos (AMD Rome), and 

TTGC’s Joliot-Curie (Intel Skylake/AMD Rome). No simulation was excluded, 

and the raw results were post-processed to provide temporal statistics and 

uncertainty estimates. 

Data source location CECI, Université de Toulouse, CNRS, CERFACS 

Data accessibility Repository name: PPMLES – Perturbed-Parameter ensemble of MUST 

Large-Eddy Simulations 

Data identification number: 10.5281/zenodo.11394347 

Direct URL to data: https://zenodo.org/records/11394347 

Related research article None . 

# AVBP LES code [ 7 ], https://www.cerfacs.fr/avbp7x/ (Accessed 2025-01-02). 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.11394347
https://zenodo.org/records/11394347
https://www.cerfacs.fr/avbp7x/
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1. Value of the Data 

• These data are useful for understanding the complex interactions between the atmospheric

boundary layer and the dispersion of pollutants in urban environments, through the example

of the canonical MUST field experiment, which corresponds to an idealized urban environ-

ment made of regularly-spaced shipping containers. 

• The dataset consists of a perturbed-parameter ensemble of 200 high-fidelity large-eddy sim-

ulations, with each simulation sample corresponding to a different mesoscale meteorological

forcing to provide an indication of the envelope of possible microscale urban flow and pollu-

tant concentration scenarios. 

• The dataset includes time series at human height to track the pollutant release and disper-

sion over time as well as complete 3-D fields of time-averaged statistics of the steady-state

wind velocity and pollutant concentration at a high spatial resolution (sub-meter), together

with the associated uncertainties. 

• These data can be used as learning data to train surrogate models, allowing researchers to ex-

periment with new machine learning architectures to accelerate the prediction of microscale

atmospheric processes. 

• Researchers can use and potentially extend this dataset for multi-model comparisons to as-

sess the structural uncertainty in large-eddy simulations. 

2. Background 

The PPMLES (Perturbed-Parameter ensemble of MUST Large-Eddy Simulations) dataset was

originally computed in [ 1 ] to better understand the near-field dispersion of air pollutants in an

idealized urban environment and at a very high resolution (i.e., sub-meter scale), and to gain

insight into its sensitivity to mesoscale meteorological forcing. 

Although several datasets of wind tunnel measurements of pollutant concentrations in ide-

alized urban environments are available (e.g. CEDVAL 1 ), they cannot represent the full range

of atmosphere-urban interactions. Field-scale experiments are more representative but they are

costly, their mesoscale conditions cannot be controlled, and they provide data that are spatially

scarce. This has motivated the construction of an LES dataset with high spatio-temporal reso-

lution and for a wide range of mesoscale meteorological forcing. The selected case, the MUST

campaign [ 2 , 3 ], has been used for a multi-model intercomparison [ 4 ], but access to the simula-

tion data has not been maintained. 

The PPMLES dataset was used to train a surrogate model that emulates the response surface

of the LES model [ 1 , 5 ]. This surrogate, which makes instantaneous predictions, was then used in

a data assimilation framework to reduce the uncertainty in pollutant concentration predictions

using local measurements. 

3. Data Description 

The PPMLES dataset is a perturbed-parameter ensemble of 200 large-eddy simulations (LES)

of wind flow and pollutant dispersion in the canonical MUST idealized urban environment corre-

sponding to an array of regularly-spaced shipping containers [ 2 , 3 ]. Each LES replicates the MUST

field experiment for a different mesoscale meteorological forcing, which is parameterized with

two uncertain input parameters: i) the inlet wind direction αinlet , which is assumed uniform

and homogeneous, and ii) the friction velocity u∗, which scales the logarithmic inlet wind pro-

file representing a fully developed neutral atmospheric surface layer. 
1 CEDVAL datasets, see https://www.mi.uni-hamburg.de/en/arbeitsgruppen/windkanallabor/data-sets.html (Accessed: 

2024-09-23). 

https://www.mi.uni-hamburg.de/en/arbeitsgruppen/windkanallabor/data-sets.html
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Table 1 

General description, size and type of each file in the dataset. 

Filename Description Size Type 

input_parameters.h5 List the 200 meteorological forcing input parameters (wind 

direction and friction velocity). 

6.8 ko HDF5 

ave_fields.h5 List of the main time-averaged wind velocity and tracer 

concentration fields predicted for each input parameter 

sample. 

17.1 Go HDF5 

uncertainty_ave_fields.h5 

List of the uncertainty of each time-averaged field as 

standard deviation and for each input parameter sample. 

15.9 Go HDF5 

mesh.h5 Contains the definition of the mesh on which the fields are 

discretized. 

387 Mo HDF5 

time_series.h5 List of the main wind and tracer concentration time series 

predicted by LES for each input parameter sample at 93 

probe locations. 

3.1 Go HDF5 

probe_network.csv Contains the coordinates of each probe on which time 

series are saved. 

2.9 ko CSV 
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An overview of the dataset files is given in Table 1 . Except for the probe network definition

in CSV), all data is stored in HDF5 2 files. This format provides efficient storage, fast access, and

ierarchical data organization. Fig. 1 gives a comprehensive description of the structure of the

DF5 files in PPMLES. 

For each sample, the predicted time-series of tracer concentration c (in ppmv) and wind ve-

ocity components u , v , w (in m.s-1 ) at 93 probe locations within the array of containers are

tored in time_series.h5. The probe locations are defined in probe_network.csv. The coordinate

ystem used is the same as in [ 3 ], so that the x - y axis system is aligned with the containers

rray. Examples of the wind velocity magnitude and tracer concentration time series for three

ifferent sam ples are shown in Fig. 2 . Note that the simulation spin-up time is included in each

ime series and is adapted to the friction velocity, which implies that the time series duration

n_temporals) is different for each sample. 

The time-averaged fields of wind velocity and tracer concentration statistics are reported in

he file ave_fields.h5. These 3-D fields are discretized over a mesh of Nnodes = 1878,585 nodes,

ith a resolution of 30 cm between the containers, allowing to have at least 8 cells over the

eight of each container. The coordinates and dual volume of each node are reported in the file

esh.h5. The 3-D fields are given as arrays of dimensions (Nsamples , Nnodes ), where Nsamples = 200

s the number of LES simulations. The dataset includes the fields of the following statistics of

nterest: 

i. First-order statistics: the time-averaged tracer concentration c (ppmv) and wind velocity

components u , v , w (m.s-1), 

ii. Second-order statistics: 

◦ The concentration root mean square fluctuations crms = 

√ 

c
′ 2 =

√ 

(c − c̄ ) 2 (ppmv), where

the upper bar denotes time-averaged quantities, 

◦ The turbulent kinetic energy of the wind tke = 

1 
2 (u

′ 2 + v′ 2 + w
′ 2 ) (m2.s-2), 

◦ The tracer turbulent transport components uprim_cprim, vprim_cprim, and wprim_cprim

(ppm.m.s-1), defined as u′ c′ , u′ c′ , and w′ c′ . 

Time averages are collected over a 200-s analysis period, which is the standard duration for

he MUST case study [ 3 , 4 ]. Examples of these statistic fields are given as horizontal cuts in Fig. 3

columns 1 and 2) and vertical cuts in Fig. 4 for two samples of the ensemble. 

Calculating the temporal statistics over a limited analysis period (i.e. 200 s in the MUST ex-

eriment) introduces a significant uncertainty due to the internal variability of the atmospheric

oundary layer [ 4 , 6 ],. The file uncertainty_ave_fields.h5 provides an estimate of this aleatory
2 HDF5 format, see https://www.hdfgroup.org/solutions/hdf5/ (Accessed: 2024-09-19). 

https://www.hdfgroup.org/solutions/hdf5/
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Fig. 1. Organization of HDF5 files, represented as purple cylinders and listed in Table 1 . Each file consists of groups and/or datasets represented by yellow folders and blue files. The name 

of each dataset is shown along with its shape in parentheses. 
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Fig. 2. Time series of the wind speed magnitude U (a, b, c) and propylene concentration c (d, e, f) predicted by LES at 

tower B at z = 2 m within the array of containers (see Fig. 5 b). Results are shown for the first three samples of the 

perturbed-parameter ensemble. Shaded gray areas correspond to the spin-up time used for each simulation. 
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ncertainty for each field in ave_fields.h5, as a standard deviation field discretized over the

ame 3-D mesh as the physical fields. The uncertainty is estimated during the simulation post-

rocessing using a bootstrap approach (Section 4.1). The bootstrap parameters, i.e. the number

f replicates n_replicates and the length of the block_length used for each field, are specified in

he Bootstrap_params group of the uncertainty_ave_fields.h5 file. Examples of the aleatory un-

ertainty, as relative standard deviation, are given in Fig. 3 (columns 3 and 4) for two samples

f the ensemble. 

. Experimental Design, Materials and Methods 

In this section, we provide a comprehensive description of the design and methods used to

cquire the PPMLES dataset. We first introduce the case study and the large-eddy simulation

LES) model used to generate the PPMLES dataset. We then explain the design of the perturbed-

arameter ensemble and how the model was modified to simulate the ensemble of wind and

ollutant dispersion scenarios. Finally, we retrace all the post-processing applied to the raw sim-

lation results to obtain the data available in the PPMLES dataset and we give an estimate of its

arbon footprint. 

.1. Large-eddy simulation model of the MUST field trial 2681829 

.1.1. The MUST field campaign 

MUST is a field experimental campaign conducted in September 2001 at the US Army Dug-

ay Proving Ground test site in the Utah desert, USA ( Fig. 5 a). Its goal was to collect com-

rehensive measurements within an idealized urban canopy to support the development and

alidation of urban dispersion models [ 2 , 3 ]. During the experiments, a non-reactive gas tracer
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Fig. 3. Horizontal cuts at z = 1.6 m of the time-averaged wind speed magnitude U (a, b), turbulent kinetic energy k (e, f), 

concentration c (i, j) and concentration fluctuation cRMS (m, n) fields, along with their associated uncertainty as relative 

standard deviation (c, d, g, h, k, l, o, p). Results are shown for the sample #001 with (α(1) 
inlet 

, u(1) 
∗ ) = (−30°, 0 . 3 m / s) 

on the first and third columns (corresponding to the time series in Fig. 2 a,d), and for the sample #101 (α(101) 
inlet 

, u(101) 
∗ ) = 

(9°, 0 . 7 m / s) on the second and last columns. White rectangles represent containers from the MUST field campaign. 

 

 

 

 

 

 

 

 

 

 

(propylene) was released within an idealized urban canopy consisting of an array of 10 × 12

regularly-spaced shipping containers covering an area of approximately 200 × 200 m2 ( Fig. 5 b).

The containers are 12.2-m long, 2.42-m wide, and 2.54-m high. Fig. 5 shows the location of the

towers and masts carrying the wind velocity and tracer concentration sensors used during the

campaign. For a full description of the instruments used, the reader is referred to [ 2 ]. 

MUST is a canonical field-scale dispersion experiment that has been used to validate a large

number of CFD dispersion models and for the COST Action 732 CFD model intercomparison [ 4 ].

For the construction of the PPMLES dataset, we focus on the trial 2681829, which corresponds

to neutral atmospheric conditions and to the tracer source location shown in Fig. 5 b. 

4.1.2. The microscale obstacle-resolving flow modeling approach 

To build the PPMLES dataset, we use as a reference the LES model of the MUST trial 2681829

validated in [ 6 ]. This model uses AVBP 3 to solve the LES-filtered Navier-Stokes and tracer

advection-diffusion equations, with a second-order Lax-Wendroff finite-volume centered numer- 

ical scheme [ 7 ]. Subgrid-scale turbulence is modeled using the Wall-Adaptative Local Eddy-
3 AVBP LES code, see https://www.cerfacs.fr/avbp7x/ (Accessed 2024-10-09). 

https://www.cerfacs.fr/avbp7x/
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Fig. 4. Vertical cuts crossing the tracer source location (represented by the red star) of the time-averaged turbulent 

tracer transport components u′ c′ (a, b), v′ c′ (c, d), w′ c′ (e, f) fields. Results are shown for the sample #001 with 

(α(1) 
inlet 

, u(1) 
∗ ) = (−30°, 0 . 3 m / s) on the left column (corresponding to the time series in Fig. 2 a, d and to the horizontal 

fields in Fig. 3 , columns 1 and 3), and for the sample #101 (α(101) 
inlet 

, u(101) 
∗ ) = (9°, 0 . 7 m / s) on the right column (corre- 

sponding to the horizontal fields in Fig. 3 , columns 2 and 4). White rectangles represent containers from the MUST field 

campaign. 
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iscosity model [ 8 ] for subgrid momentum transport, and a gradient-diffusion hypothesis for

ubgrid tracer transport (with a turbulent Schmidt number of 0.6). We also use a pressure gra-

ient scaling (PGS) for low Mach number flows to reduce computational cost [ 9 ]. 

The computational domain of the reference LES model is a rectangular parallelepiped ori-

nted along the mean streamwise wind direction, with dimensions of 420 × 420 × 50 m3 (rep-

esented by the red square in Fig. 8 ). The domain was discretized using the CENTAUR 

4 mesh

enerator resulting in an unstructured and boundary-fitted mesh of 91 million tetrahedra. In

he region of interest, which corresponds to a 246 × 266 × 3.6 m3 box containing all the con-

ainers, the mesh is uniform with a resolution of 0.3 m. This resolution ensures that there are 8

ells over the height of each container, a minimal requirement to accurately predict their effect

n the flow. In the rest of the domain, the mesh is gradually stretched to reach a resolution of

 m at the top boundary, with a maximum stretching ratio of 1.7, to further save computational

ime. 

Boundary conditions . At the inlet, a logarithmic vertical wind profile is imposed so that the

ean inlet wind velocity vector uinlet reads 

uinlet =
( 

uinlet cos ( αinlet ) 
uinlet sin ( αinlet ) 

0 

) 

, with uinlet ( z) =
u∗
κ

ln 

(
z + z0 

z0 

)
, (1)

here u∗ is the friction velocity, κ is the von Kármán constant equal to 0.4, and z0 is the aero-

ynamic roughness length, which was estimated to be 0.045 ±0.005 m for the MUST field ter-
4 CENTAUR software, see https://home.centaursoft.com/ (Accessed 2024-10-09). 

https://home.centaursoft.com/
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Fig. 5. (a) Satellite image of the Dugway Proving Ground test site where the MUST field campaign was conducted. The 

red crosshair indicates the location of the simplified urban canopy area made of containers. The location of the SAMS 

meteorological #8 and towers S, T, N are indicated by the yellow, blue, red and green markers, respectively. (b) Close- 

up schematic view showing the location of each sensor for which time series are stored. The location of the propylene 

emission source for the MUST trial 2681829 is shown as a red star. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rain [ 3 ]. In addition, a synthetic turbulence injection method [ 10 ] is used to impose upstream

wind fluctuations, which are calibrated using a precursor simulation (with periodic boundary

conditions and no obstacles) [ 6 ]. Free slip boundary conditions are used at the lateral bound-

aries. Static pressure is imposed at the outlet and top boundaries. A smooth law of the wall is

used to impose the shear stress at the obstacle boundaries, while at the ground boundaries the

shear stress is imposed according to the Monin-Obhukov similarity theory in neutral conditions

to match the experimentally estimated aerodynamic roughness length z0 . The tracer source is

modeled by a source term in the advection-diffusion equation that matches the experimental

volumetric flow rate. A full description of the boundary conditions is given in [ 1 ]. 

Initial conditions . The LES simulation is initialized with a homogeneous flow field in the

horizontal direction equal to the prescribed inlet mean field ( Eq. (1) ). To ensure that first- and

second-order statistics of the flow and the tracer reach a stationary state, we use a spin-up of

1.5 times the convective time scale, which is about 17 times the LES turnover time H/u∗ with H

the height of the containers, before collecting the statistics. 

The reference simulation is defined by setting the mesoscale meteorological forcing param-

eters thanks to the field campaign upstream wind velocity measurements at tower S and ASU

probe ( Fig. 5 b). It yields α(re f ) 
inlet 

= −41 ° and u
(re f ) 
∗ = 0.73 m.s-1 . Concerning the temporal resolu-

tion, the time step imposed by the numerical scheme is equal to 7.9 × 10–4 s when using PGS. At

the probe locations ( Fig. 5 b), the outputs are stored with a resolution of 0.05 s. For the full 3-D

fields, instantaneous fields were not saved to limit the amount of data stored (apart from those

needed to restart simulations), and sliding time-averaged fields over a 10-s period are saved for

uncertainty estimation. Note that thresholding is not applied to physical quantities that may be

negative due to numerical errors, such as the tracer concentration, to ensure conservation. The

final LES predictions of wind velocity and tracer concentration statistics are defined over a 200-s

analysis window as in [ 3 , 4 ], so that they can be compared with field measurements. Note that

this limited acquisition time introduces a significant aleatory uncertainty in the LES predictions

(Section 4.1). 

4.2. Perturbed-parameter ensemble design 

4.2.1. Definition of the input parameter space 

To explore the sensitivity of the wind velocity and pollutant concentration statistics to the

mesoscale meteorological forcing, we design an ensemble of LES by perturbing the boundary
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Fig. 6. Distributions of the horizontal wind velocity (a) and wind direction (b) based on 15-minute averaged wind mea- 

surements at the SAMS meteorological station #8 ( Fig. 5 a) at z = 10 m over 12 days during the MUST field campaign. 
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ondition parameters that have the most influence on the predictions under neutral thermal

tratification conditions [ 1 ]: the inlet wind direction αinlet and the friction velocity u∗. These

arameters determine the vertical profile imposed at the inlet boundary condition ( Eq. (1) ). Note

hat the level of turbulence imposed at the inlet has a negligible effect on the LES predictions

s the turbulence spectrum quickly returns to an equilibrium state with the rough ground [ 1 ]. 

We then define a plausible range of variation for these two input parameters (αinlet , u∗)
hanks to a microclimatology using available measurement data from the nearest meteorolog-

cal station, i.e. the SAMS station #8 located approximately one kilometer from the MUST field

ampaign site ( Fig. 5 a). This represents a total of 2391 15-minute averaged wind measurements

t 10 m above ground level. Fig. 6 shows that all wind directions are likely to occur and that

 99 % of the horizontal wind speed measurements are below 12 m.s-1 , corresponding to a fric-

ion velocity of 0.89 m.s-1 . For the ensemble generation, we thereby limit the maximum friction

elocity to 0.89 m.s-1 and we also limit the minimum friction velocity to 0.07 m.s-1 , which cor-

esponds to a wind speed of about 1 m.s-1 at 10 m height to focus on windy conditions. The

ange of variation for the inlet wind direction αinlet is also narrowed so that the pollutant plume

lways remains mostly in the canopy and therefore at the level of existing sensors in the LES

imulations. The input parameter space thus reads: 

( αinlet , u∗) ∈ � = [ −90◦, 30◦] ×
[
0 . 07 m s−1 , 0 . 89 m s−1 

]
. (2)

.2.2. Sampling of the input parameter space 

The next step is to sample the input parameter space � and run one LES per sample to

enerate the PPMLES dataset. Given the very large computational cost of the LES model, our

omputational budget was 200 simulations. To get the most out of this budget, we use the

alton’s sequence [ 11 ] to sample the input parameter space as uniformly as possible. Indeed,

s a low-discrepancy sequence, it covers the input parameter space more efficiently than a

urely random sequence by avoiding sampling the same region multiple times. For practical

easons, the input parameter ensemble was generated in two parts: the first 100 samples cor-

esponding to angles between −60 ° and 0 °, and the next 100 samples corresponding to angles

n [−90◦, −60◦[]0◦, 30◦] . Fig. 7 shows the resulting perturbed-parameter ensemble colored by

ample index. 
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Fig. 7. Input parameter space sampling obtained with Halton’s sequence. Each point is a pair of parameters for which 

we perform an LES prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Model adaptation for perturbed-parameter ensemble generation 

In this section, we detail the modifications made in the LES model to predict the fields of

interest for every input parameter sample in the perturbed-parameter ensemble ( Fig. 7 ). 

4.3.1. Computational domain adaptation to the wind direction 

In the reference LES model, if the mean flow direction deviates too much from the reference

wind direction value, it induces lateral confinement and numerical instabilities due to the free

slip boundary conditions at the domain sides. This problem is solved by rotating the computa-

tional domain so that the sides always remain parallel to the mean flow direction. To efficiently

implement this feature, the domain is split into two subdomains as shown in Fig. 8 : the pe-

ripheral domain D2, which is rotated to align with αinlet , and the inner domain D1, which is

fixed. 

The Navier–Stokes equations are solved on each domain by parallel AVBP instances [ 12 ], cou-

pled using CWIPI. 5 The interpolation between the two domains is computed over an overlapping

region (hatched area in Fig. 8 ). This region should contain at least 10 cells between the subdo-

main boundaries in each direction, resulting in a 13 % increase in the number of cells in the

computational mesh. 

This domain decomposition facilitates the generation of a large ensemble of simulations be-

cause it does not require the generation of a new mesh for each new wind direction. In addition,

having a static internal domain shared by all LES simulations avoids the use of interpolation to

compare LES predictions obtained with different wind conditions. 

4.3.2. Turbulence injection rescaling 

In the reference LES model, a precursor simulation without obstacles is performed to esti-

mate the Reynolds stress tensor and inject realistic wind fluctuations at the inlet [ 6 ]. To avoid

running a precursor simulation for each pair of input parameters (αinlet , u∗) in the Halton’s se-

quence, the parameter-dependent Reynolds stress tensor R (αinlet , u∗) is obtained by rotating and

then rescaling the reference Reynolds stress tensor R(re f ) : 

R( αinlet , u∗) =
(

u( re f ) 
∗
u∗

)2 

× M( αinlet ) R
( re f ) M( αinlet ) 

T 
, 
5 CWIPI software, see https://w3.onera.fr/cwipi (Accessed: 2024-08-19, in French). 

https://w3.onera.fr/cwipi
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Fig. 8. Horizontal schematic view of the computational domain at the level of the containers. The domain is divided into 

two subdomains: the fixed domain D1 in blue and the rotating peripheral domain D2 in red. The interpolation overlap 

area between D1 and D2 used for the coupling with the CWIPI library is hatched. The coordinate system shown is the 

one defined by [ 3 ] and is attached to the fixed domain D1. The location of the tracer source in the MUST trial 2681829 

is indicated by the red star. The blue (resp. orange) triangle symbol represents the tower S (resp. T). 
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t

with M( αinlet ) =
( 

cos ( αinlet ) − sin ( αinlet ) 0 

sin ( αinlet ) cos ( αinlet ) 0 

0 0 1 

) 

. 

.3.3. Adaptation of the spin-up time 

The spin-up time of the LES model has to be adjusted for each sample since the time re-

uired to reach a steady state depends on the friction velocity u∗, since the longer the convective

imescale, the longer the time required for the injected eddies to cross the domain. The spin-

p time of each simulation tspin −up (αinlet , u∗) is therefore set by rescaling the reference spin-up

ime t
(re f ) 
spin −up 

by the friction velocity as follows: 

tspin −up ( αinlet , u∗) = t( ref ) 
spin −up 

×
(

u( ref ) 
∗
u∗

)
. 

Given the variation range of the friction velocity considered u∗ ( Eq. (2) ), the spin-up time of

he simulations within the PPMLES dataset simulation varies between 60 and 550 s, as shown

n Fig. 2 . 

.4. Perturbed-parameter ensemble post-processing 

In this section, we describe the post-processing performed on the raw LES results, in order

o i) estimate their uncertainty, and ii) to reduce the volume of data to store. 
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Table 2 

Main statistics of the perturbed-parameter ensemble computation and the associated carbon footprint for each super- 

computer used. Ncpu is the number of cores on which the LES computations were parallelized, NLES is the number of LES 

run on each supercomputer, MhCPU is the total computational time in million of core hours, and tC O2 eq is the associated 

greenhouse gas emissions in tons of carbon dioxide equivalent. 

Supercomputer Partition Processors NCPU NLES MhCPU tCO2 eq 

Nemo Haswell Intel E5–2680v3 60 0–90 0 25 0.70 1,4 

Kraken Skylake Intel 6140 540–900 15 0.34 0,6 

Joliot-Curie Skylake Intel 8168 1344 49 1.57 2,6 

Joliot-Curie Rome AMD Epyc7H12 1024 42 1.15 1,9 

Belenos Rome AMD Epyc7742 1536 69 1.95 3,2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.1. Estimation of the uncertainty of the time-averaged fields 

Due to the limited analysis period of 200 s, the time-averaged fields predicted by LES are sub-

ject to an aleatory uncertainty induced by the internal variability of the atmospheric boundary

layer. This irreducible form of uncertainty is significant in the context of the MUST field cam-

paign [ 4 ]. To obtain realistic uncertainty estimates for each LES time-averaged field, we use the

statistical method designed and validated by [ 6 ], which relies on resampling of the sub-averages

of the physical fields using the stationary bootstrap algorithm of [ 13 ]. 

We use 10 0 0 bootstrap replicates and the bootstrap block length is set independently for

each simulation sample and for each variable to be equal to the spatially averaged correla-

tion time of the variable. For the composite variables u′ c′ , v′ c′ , and w′ c′ , we use the largest

correlation time among the correlation times of each variable, in order to avoid uncertainty

underestimation. The block length used for each sample and each variable is reported in the

Bootstrap_params group of the uncertainty_ave_fields.h5 file. Using this approach, we provide,

at each grid node of the domain, an estimate of the aleatory uncertainty associated with each

time-averaged field in the PPMLES dataset. This aleatory uncertainty is shown in Fig. 3 for two

samples. 

4.4.2. Data volume reduction 

All the fields in the PPMLES dataset are interpolated onto an analysis mesh with a resolution

twice as coarse as the LES mesh. In addition, we restrict the analysis to the circular inner do-

main D1 (domain with blue boundary in Fig. 8 ) and below a height of 20 m, since most of the

pollutant is located in this area. The corresponding analysis mesh is composed of 1 . 88 × 10 6 

nodes, thus reducing the number of nodes by a factor of 10. The characteristic cell sizes of the

analysis mesh vary from 0.6 m to 4 m, limiting the loss of information as these resolutions are

smaller than the scales of variation of the fields of interest. 

To further reduce the volume of data storage volume, we use a scale-offset lossy compres-

sion, 6 which trades precision for storage space by retaining only 16 digits after the decimal point

for each floating point in the discretized time-average and uncertainty fields. This reduces the

volume of the 3600 time-average and uncertainty field samples from 52.8 Go to 32.1 Go. 

These two steps have allowed us to significantly reduce the volume of the dataset, allowing

it to be shared and reducing the computational burden associated with its use. 

4.5. Carbon footprint of the perturbed-parameter ensemble 

The computation of the PPMLES dataset was performed on several supercomputers: CERFACS’

Nemo and Kraken, Météo-France’s Belenos, and TTGC’s Joliot-Curie. The technical characteristics

of these supercomputers are summarized in Table 2 . The scaling of the LES model was tested
6 HDF5 scale-offset lossy compression, see: https://docs.h5py.org/en/stable/high/dataset.html#scale- offset- filter (Ac- 

cessed: 2024-08-19). 

https://docs.h5py.org/en/stable/high/dataset.html#scale-offset-filter
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or each cluster, resulting in different optimal numbers of cores. In total, the 200 simulations of

he perturbed-parameter ensemble have consumed 5.7 milion of core hours. 

Given the amount of computing resources from high performance computing centers that

onsume considerable amounts of energy, the PPMLES dataset is thought to be responsible for

 substantial amount of greenhouse gas emissions. To raise awareness of this issue, we estimate

he carbon footprint of the PPMLES dataset below. 

For the simulations performed in CERFACS (20 % of the total), we first estimate the average

nergy consumption emission factor (i.e. how much greenhouse gas is emitted per core hour of

omputation). This is obtained by dividing the total greenhouse gas emissions induced by the

lectricity and cooling consumption of the supercomputers over the year, given the electricity

ix of France, by the total number of computing hours performed over the year. In addition, the

missions related to the life cycle of the supercomputers (i.e. manufacturing, transportation and

ecycling) are known to be of the same order of magnitude, based on two carbon footprint stud-

es: one for a modestly sized supercomputer [ 14 ], and one for a partition of a French national

omputing center (private communication). We therefore estimate the total emission factor of

omputing in CERFACS to be 2 gCO2 eq.hCPU 
-1 in 2022, from which we derive the greenhouse gas

missions of the LES carried out at CERFACS ( Table 2 ). 

For the simulations performed on the TTGC’s supercomputers (46 % of the total), we use the

ES1point5 7 carbon footprint estimation tool available for French research laboratories. For the

omputations performed on Météo-France’s supercomputer (34 % of the total), we use the same

mission factor as for the Joliot-Curie Rome partition, since they have a similar architecture. 

In the end, computing the PPMLES dataset was responsible for the emission of about 9.7

CO2 eq, which can be compared to the target of 2 tCO2 eq/capita to limit global warming to

 1.5 °C by 2050. It is worth noting that this estimate is only an order-of-magnitude given the

ignificant uncertainties at involved. It does not include the emissions related to data storage and

ransfer, which are negligible compared to the computational emissions. The carbon footprint

stimate of the PPMLES dataset highlights the substantial environmental impact running large

nsemble of high-resolution LES simulations. Strengthening best computing practices is a must

o limit this footprint; building community datasets of LES simulations is a further step and

llows the pooling of effort s, similar to what has been done for climate simulations [ 15,16 ]. The

PMLES dataset is a contribution to encourage the community to move in this direction. 

imitations 

Due to storage limitations, we could not include some fields (e.g. the Reynolds stress tensor

omponents or the concentration maximum) in the PPMLES dataset. However, these fields were

tored during the simulations and could be provided by the authors upon request. 

More fundamentally, the PPMLES dataset is limited in terms of atmospheric and dispersion

onditions compared to what is possible in reality. Only neutral atmospheric conditions have

een considered in what can be considered as a first step. It would be interesting to include

table and unstable atmospheric conditions to cover the full range of possible thermal stratifica-

ion conditions. Furthermore, all LES simulations use the same experimental setup (i.e. the same

rban layout and source location). Extending the PPMLES dataset by perturbing more diverse

arameters, and thus including a wider range of atmospheric and dispersion conditions, is a di-

ect prospect of this work. It would also be interesting to simulate the same case study using

ifferent LES solvers (here only the AVBP LES solver is used). Each LES solver has its own bias,

nd a variety of LES solvers would introduce structural modeling uncertainties into the dataset,

hereby enriching the scientific questions that can be addressed with the dataset. 
7 GES1point5 tool, see https://apps.labos1point5.org/ges-1point5 (Accessed: 2024-08-19). 

https://apps.labos1point5.org/ges-1point5
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